Displaying 1021 – 1040 of 1233

Showing per page

Asymptotic and exponential decay in mean square for delay geometric Brownian motion

Jan Haškovec (2022)

Applications of Mathematics

We derive sufficient conditions for asymptotic and monotone exponential decay in mean square of solutions of the geometric Brownian motion with delay. The conditions are written in terms of the parameters and are explicit for the case of asymptotic decay. For exponential decay, they are easily resolvable numerically. The analytical method is based on construction of a Lyapunov functional (asymptotic decay) and a forward-backward estimate for the square mean (exponential decay).

Asymptotic Behavior of a Discrete Maturity Structured System of Hematopoietic Stem Cell Dynamics with Several Delays

M. Adimy, F. Crauste, A. El Abdllaoui (2010)

Mathematical Modelling of Natural Phenomena

We propose and analyze a mathematical model of hematopoietic stem cell dynamics. This model takes into account a finite number of stages in blood production, characterized by cell maturity levels, which enhance the difference, in the hematopoiesis process, between dividing cells that differentiate (by going to the next stage) and dividing cells that keep the same maturity level (by staying in the same stage). It is described by a system of n nonlinear differential equations with n delays. We study...

Asymptotic behavior of differential equations driven by periodic and random processes with slowly decaying correlations

Renaud Marty (2005)

ESAIM: Probability and Statistics

We consider a differential equation with a random rapidly varying coefficient. The random coefficient is a gaussian process with slowly decaying correlations and compete with a periodic component. In the asymptotic framework corresponding to the separation of scales present in the problem, we prove that the solution of the differential equation converges in distribution to the solution of a stochastic differential equation driven by a classical brownian motion in some cases, by a fractional brownian...

Asymptotic behavior of differential equations driven by periodic and random processes with slowly decaying correlations

Renaud Marty (2010)

ESAIM: Probability and Statistics

We consider a differential equation with a random rapidly varying coefficient. The random coefficient is a Gaussian process with slowly decaying correlations and compete with a periodic component. In the asymptotic framework corresponding to the separation of scales present in the problem, we prove that the solution of the differential equation converges in distribution to the solution of a stochastic differential equation driven by a classical Brownian motion in some cases, by a fractional Brownian motion...

Asymptotic behavior of second-order dissipative evolution equations combining potential with non-potential effects

Hedy Attouch, Paul-Émile Maingé (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In the setting of a real Hilbert space , we investigate the asymptotic behavior, as time t goes to infinity, of trajectories of second-order evolution equations            ü(t) + γ u ˙ (t) + ∇ϕ(u(t)) + A(u(t)) = 0, where ∇ϕ is the gradient operator of a convex differentiable potential function ϕ: ,A: is a maximal monotone operator which is assumed to beλ-cocoercive, and γ > 0 is a damping parameter. Potential and non-potential effects are associated respectively to ∇ϕ and A. Under condition...

Asymptotic behavior of second-order dissipative evolution equations combining potential with non-potential effects*

Hedy Attouch, Paul-Émile Maingé (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In the setting of a real Hilbert space , we investigate the asymptotic behavior, as time t goes to infinity, of trajectories of second-order evolution equations            ü(t) + γ u ˙ (t) + ∇ϕ(u(t)) + A(u(t)) = 0, where ∇ϕ is the gradient operator of a convex differentiable potential function ϕ : , A : is a maximal monotone operator which is assumed to be λ-cocoercive, and γ > 0 is a damping parameter. Potential and non-potential effects are associated respectively to ∇ϕ and A. Under condition...

Currently displaying 1021 – 1040 of 1233