On structure of solutions of a system of four differential inequalities.
We investigate the nonautonomous periodic system of ODE’s of the form , where is a -periodic function defined by for , for and the vector fields and are related by an involutive diffeomorphism.
We prove the existence of an effectively computable integer polynomial P(x,t₀,...,t₅) having the following property. Every continuous function can be approximated with arbitrary accuracy by an infinite sum of analytic functions , each solving the same system of universal partial differential equations, namely (σ = 1,..., s).
Mostramos la existencia de dos curvas de datos iniciales (x0, v0) para las cuales las soluciones x(t) correspondientes del problema de Cauchy asociado a la ecuación xtt + |xt|α-1 xt + x = 0, supuesto α ∈ (0,1), se anulan idénticamente después de un tiempo finito. Mediante métodos asintóticos y argumentos de comparación mostramos que para muchos otros datos iniciales las soluciones decaen a 0, en un tiempo infinito, como t-α / (1-α).
We apply the averaging method to ordinary differential inclusions with maxima perturbed by a small parameter and illustrate the method by some examples.