Displaying 221 – 240 of 491

Showing per page

On some properties of the solution of the differential equation u ' ' + 2 u ' r = u - u 3

Valter Šeda, Ján Pekár (1990)

Aplikace matematiky

In the paper it is shown that each solution u ( r , α ) ot the initial value problem (2), (3) has a finite limit for r , and an asymptotic formula for the nontrivial solution u ( r , α ) tending to 0 is given. Further, the existence of such a solutions is established by examining the number of zeros of two different solutions u ( r , α ¯ ) , u ( r , α ^ ) .

On Stability in Impulsive Dynamical Systems

Krzysztof Ciesielski (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Several results on stability in impulsive dynamical systems are proved. The first main result gives equivalent conditions for stability of a compact set. In particular, a generalization of Ura's theorem to the case of impulsive systems is shown. The second main theorem says that under some additional assumptions every component of a stable set is stable. Also, several examples indicating possible complicated phenomena in impulsive systems are presented.

On strongly monotone flows

Wolfgang Walter (1997)

Annales Polonici Mathematici

M. Hirsch's famous theorem on strongly monotone flows generated by autonomous systems u'(t) = f(u(t)) is generalized to the case where f depends also on t, satisfies Carathéodory hypotheses and is only locally Lipschitz continuous in u. The main result is a corresponding Comparison Theorem, where f(t,u) is quasimonotone increasing in u; it describes precisely for which components equality or strict inequality holds.

Currently displaying 221 – 240 of 491