Displaying 21 – 40 of 59

Showing per page

Generalized practical stability analysis of discontinuous dynamical systems

Guisheng Zhai, Anthony Michel (2004)

International Journal of Applied Mathematics and Computer Science

In practice, one is not only interested in the qualitative characterizations provided by the Lyapunov stability, but also in quantitative information concerning the system behavior, including estimates of trajectory bounds, possibly over finite time intervals. This type of information has been ascertained in the past in a systematic manner using the concept of practical stability. In the present paper, we give a new definition of generalized practical stability (abbreviated as GP-stability) and...

Generalized reciprocity for self-adjoint linear differential equations

Ondřej Došlý (1995)

Archivum Mathematicum

Let L ( y ) = y ( n ) + q n - 1 ( t ) y ( n - 1 ) + + q 0 ( t ) y , t [ a , b ) , be an n -th order differential operator, L * be its adjoint and p , w be positive functions. It is proved that the self-adjoint equation L * p ( t ) L ( y ) = w ( t ) y is nonoscillatory at b if and only if the equation L w - 1 ( t ) L * ( y ) = p - 1 ( t ) y is nonoscillatory at b . Using this result a new necessary condition for property BD of the self-adjoint differential operators with middle terms is obtained.

Generalized solutions to hybrid dynamical systems

Ricardo G. Sanfelice, Rafal Goebel, Andrew R. Teel (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Several recent results in the area of robust asymptotic stability of hybrid systems show that the concept of a generalized solution to a hybrid system is suitable for the analysis and design of hybrid control systems. In this paper, we show that such generalized solutions are exactly the solutions that arise when measurement noise in the system is taken into account.

Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication

Hongtao Liang, Zhen Wang, Zongmin Yue, Ronghui Lu (2012)

Kybernetika

A fractional differential controller for incommensurate fractional unified chaotic system is described and proved by using the Gershgorin circle theorem in this paper. Also, based on the idea of a nonlinear observer, a new method for generalized synchronization (GS) of this system is proposed. Furthermore, the GS technique is applied in secure communication (SC), and a chaotic masking system is designed. Finally, the proposed fractional differential controller, GS and chaotic masking scheme are...

Generic saddle-node bifurcation for cascade second order ODEs on manifolds

Milan Medveď (1998)

Annales Polonici Mathematici

Cascade second order ODEs on manifolds are defined. These objects are locally represented by coupled second order ODEs such that any solution of one of them can represent an external force for the other one. A generic saddle-node bifurcation theorem for 1-parameter families of cascade second order ODEs is proved.

Geometry of isotypic Kronecker webs

Wojciech Kryński (2012)

Open Mathematics

An isotypic Kronecker web is a family of corank m foliations { t } t P 1 such that the curve of annihilators t ↦ (T x F t)⊥ ∈ Grm(T x* M) is a rational normal curve in the Grassmannian Grm(T x*M) at any point x ∈ M. For m = 1 we get Veronese webs introduced by I. Gelfand and I. Zakharevich [Gelfand I.M., Zakharevich I., Webs, Veronese curves, and bi-Hamiltonian systems, J. Funct. Anal., 1991, 99(1), 150–178]. In the present paper, we consider the problem of local classification of isotypic Kronecker webs...

Geometry of second-order connections and ordinary differential equations

Alexandr Vondra (1995)

Mathematica Bohemica

The geometry of second-order systems of ordinary differential equations represented by 2 -connections on the trivial bundle error × M is studied. The formalism used, being completely utilizable within the framework of more general situations (partial equations), turns out to be of interest in confrontation with a traditional approach (semisprays), moreover, it amounts to certain new ideas and results. The paper is aimed at discussion on the interrelations between all types of connections having to do with...

Geometry of third order ODE systems

Alexandr Medvedev (2010)

Archivum Mathematicum

We compute cohomology spaces of Lie algebras that describe differential invariants of third order ordinary differential equations. We prove that the algebra of all differential invariants is generated by 2 tensorial invariants of order 2, one invariant of order 3 and one invariant of order 4. The main computational tool is a Serre-Hochschild spectral sequence and the representation theory of semisimple Lie algebras. We compute differential invariants up to degree 2 as application.

Currently displaying 21 – 40 of 59