Generalized persistency of excitation.
In practice, one is not only interested in the qualitative characterizations provided by the Lyapunov stability, but also in quantitative information concerning the system behavior, including estimates of trajectory bounds, possibly over finite time intervals. This type of information has been ascertained in the past in a systematic manner using the concept of practical stability. In the present paper, we give a new definition of generalized practical stability (abbreviated as GP-stability) and...
Let , be an -th order differential operator, be its adjoint and be positive functions. It is proved that the self-adjoint equation is nonoscillatory at if and only if the equation is nonoscillatory at . Using this result a new necessary condition for property BD of the self-adjoint differential operators with middle terms is obtained.
In this paper first order systems of linear of ODEs are considered. It is shown that these systems admit unique solutions in the Colombeau algebra .
Several recent results in the area of robust asymptotic stability of hybrid systems show that the concept of a generalized solution to a hybrid system is suitable for the analysis and design of hybrid control systems. In this paper, we show that such generalized solutions are exactly the solutions that arise when measurement noise in the system is taken into account.
A fractional differential controller for incommensurate fractional unified chaotic system is described and proved by using the Gershgorin circle theorem in this paper. Also, based on the idea of a nonlinear observer, a new method for generalized synchronization (GS) of this system is proposed. Furthermore, the GS technique is applied in secure communication (SC), and a chaotic masking system is designed. Finally, the proposed fractional differential controller, GS and chaotic masking scheme are...
Nous nous proposons, dans ce travail, d'étudier certaines propriétés géométriques telles que diverses symétries et diverses concavités radiales, directionnelles, etc., pour des équations completement non linéaires (...).
Cascade second order ODEs on manifolds are defined. These objects are locally represented by coupled second order ODEs such that any solution of one of them can represent an external force for the other one. A generic saddle-node bifurcation theorem for 1-parameter families of cascade second order ODEs is proved.
An isotypic Kronecker web is a family of corank m foliations such that the curve of annihilators t ↦ (T x F t)⊥ ∈ Grm(T x* M) is a rational normal curve in the Grassmannian Grm(T x*M) at any point x ∈ M. For m = 1 we get Veronese webs introduced by I. Gelfand and I. Zakharevich [Gelfand I.M., Zakharevich I., Webs, Veronese curves, and bi-Hamiltonian systems, J. Funct. Anal., 1991, 99(1), 150–178]. In the present paper, we consider the problem of local classification of isotypic Kronecker webs...
The geometry of second-order systems of ordinary differential equations represented by -connections on the trivial bundle is studied. The formalism used, being completely utilizable within the framework of more general situations (partial equations), turns out to be of interest in confrontation with a traditional approach (semisprays), moreover, it amounts to certain new ideas and results. The paper is aimed at discussion on the interrelations between all types of connections having to do with...
We compute cohomology spaces of Lie algebras that describe differential invariants of third order ordinary differential equations. We prove that the algebra of all differential invariants is generated by 2 tensorial invariants of order 2, one invariant of order 3 and one invariant of order 4. The main computational tool is a Serre-Hochschild spectral sequence and the representation theory of semisimple Lie algebras. We compute differential invariants up to degree 2 as application.