Remarque sur la méthode de la variation de la constante généralisée
We study the relation between the solutions set to a perturbed semilinear differential inclusion with nonconvex and non-Lipschitz right-hand side in a Banach space and the solutions set to the relaxed problem corresponding to the original one. We find the conditions under which the set of solutions for the relaxed problem coincides with the intersection of closures (in the space of continuous functions) of sets of δ-solutions to the original problem.
We study the vibration of lumped parameter systems whose constituents are described through novel constitutive relations, namely implicit relations between the forces acting on the system and appropriate kinematical variables such as the displacement and velocity of the constituent. In the classical approach constitutive expressions are provided for the force in terms of appropriate kinematical variables, which when substituted into the balance of linear momentum leads to a single governing ordinary...
Nous considérons un germe de 1-forme analytique dans dont le 1-jet est . Nous montrons que si l’équation définit un centre (i.e toutes les courbes solutions sont des cycles) il existe une involution analytique de préservant le portrait de phase du système. Géométriquement ceci signifie que les centres analytiques nilpotents sont obtenus par image réciproque par des applications pli. Un théorème de conjugaison équivariante permet d’obtenir une classification complète de ces centres.
In this paper we recall discrete order preserving property related to the discrete Riccati matrix equation. We present results obtained by applying this property to the solutions of the Riccati matrix differential equation.