Displaying 1461 – 1480 of 2827

Showing per page

On complexity and motion planning for co-rank one sub-riemannian metrics

Cutberto Romero-Meléndez, Jean Paul Gauthier, Felipe Monroy-Pérez (2004)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the motion planning problem for generic sub-riemannian metrics of co-rank one. We give explicit expressions for the metric complexity (in the sense of Jean [10, 11]), in terms of the elementary invariants of the problem. We construct asymptotic optimal syntheses. It turns out that among the results we show, the most complicated case is the 3-dimensional. Besides the generic C case, we study some non-generic generalizations in the analytic case.

On complexity and motion planning for co-rank one sub-Riemannian metrics

Cutberto Romero-Meléndez, Jean Paul Gauthier, Felipe Monroy-Pérez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the motion planning problem for generic sub-Riemannian metrics of co-rank one. We give explicit expressions for the metric complexity (in the sense of Jean [CITE]), in terms of the elementary invariants of the problem. We construct asymptotic optimal syntheses. It turns out that among the results we show, the most complicated case is the 3-dimensional. Besides the generic C∞ case, we study some non-generic generalizations in the analytic case.

On consistency, stability and convergence of staggered solution procedures

Ewa Turska, Bernardo A. Schrefler (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The simultaneous and staggered procedures of solving a partitioned form of a coupled system of ordinary differential equations are presented. Formulas for errors are compared. Counter-examples for convergence with a constant number of iterations at each time step are given.

On contraction principle applied to nonlinear fractional differential equations with derivatives of order α ∈ (0,1)

Małgorzata Klimek (2011)

Banach Center Publications

One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.

On differential equations and inclusions with mean derivatives on a compact manifold

S.V. Azarina, Yu.E. Gliklikh (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We introduce and investigate a new sort of stochastic differential inclusions on manifolds, given in terms of mean derivatives of a stochastic process, introduced by Nelson for the needs of the so called stochastic mechanics. This class of stochastic inclusions is ideologically the closest one to ordinary differential inclusions. For inclusions with forward mean derivatives on manifolds we prove some results on the existence of solutions.

On differential inclusions of velocity hodograph type with Carathéodory conditions on Riemannian manifolds

Yuri E. Gliklikh, Andrei V. Obukhovski (2004)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We investigate velocity hodograph inclusions for the case of right-hand sides satisfying upper Carathéodory conditions. As an application we obtain an existence theorem for a boundary value problem for second-order differential inclusions on complete Riemannian manifolds with Carathéodory right-hand sides.

On Differential Inclusions with Unbounded Right-Hand Side

Benahmed, S. (2011)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 58C06, 47H10, 34A60.The classical Filippov’s Theorem on existence of a local trajectory of the differential inclusion [x](t) О F(t,x(t)) requires the right-hand side F(·,·) to be Lipschitzian with respect to the Hausdorff distance and then to be bounded-valued. We give an extension of the quoted result under a weaker assumption, used by Ioffe in [J. Convex Anal. 13 (2006), 353-362], allowing unbounded right-hand side.

On discontinuous implicit differential equations in ordered Banach spaces with discontinuous implicit boundary conditions

S. Carl, S. Heikkilä (1999)

Annales Polonici Mathematici

We consider the existence of extremal solutions to second order discontinuous implicit ordinary differential equations with discontinuous implicit boundary conditions in ordered Banach spaces. We also study the dependence of these solutions on the data, and cases when the extremal solutions are obtained as limits of successive approximations. Examples are given to demonstrate the applicability of the method developed in this paper.

On Euler methods for Caputo fractional differential equations

Petr Tomášek (2023)

Archivum Mathematicum

Numerical methods for fractional differential equations have specific properties with respect to the ones for ordinary differential equations. The paper discusses Euler methods for Caputo differential equation initial value problem. The common properties of the methods are stated and demonstrated by several numerical experiments. Python codes are available to researchers for numerical simulations.

Currently displaying 1461 – 1480 of 2827