Displaying 121 – 140 of 1042

Showing per page

Bound sets and two-point boundary value problems for second order differential systems

Jean Mawhin, Katarzyna Szymańska-Dębowska (2019)

Mathematica Bohemica

The solvability of second order differential systems with the classical separated or periodic boundary conditions is considered. The proofs use special classes of curvature bound sets or bound sets together with the simplest version of the Leray-Schauder continuation theorem. The special cases where the bound set is a ball, a parallelotope or a bounded convex set are considered.

Boundary value problem for differential inclusions in Fréchet spaces with multiple solutions of the homogeneous problem

Irene Benedetti, Luisa Malaguti, Valentina Taddei (2011)

Mathematica Bohemica

The paper deals with the multivalued boundary value problem x ' A ( t , x ) x + F ( t , x ) for a.a. t [ a , b ] , M x ( a ) + N x ( b ) = 0 , in a separable, reflexive Banach space E . The nonlinearity F is weakly upper semicontinuous in x . We prove the existence of global solutions in the Sobolev space W 1 , p ( [ a , b ] , E ) with 1 < p < endowed with the weak topology. We consider the case of multiple solutions of the associated homogeneous linearized problem. An example completes the discussion.

Boundary value problems and periodic solutions for semilinear evolution inclusions

Nikolaos S. Papageorgiou (1994)

Commentationes Mathematicae Universitatis Carolinae

We consider boundary value problems for semilinear evolution inclusions. We establish the existence of extremal solutions. Using that result, we show that the evolution inclusion has periodic extremal trajectories. These results are then applied to closed loop control systems. Finally, an example of a semilinear parabolic distributed parameter control system is worked out in detail.

Boundary value problems for first order multivalued differential systems

Abdelkader Boucherif, N.Chiboub-Fellah Merabet (2005)

Archivum Mathematicum

We present some existence results for boundary value problems for first order multivalued differential systems. Our approach is based on topological transversality arguments, fixed point theorems and differential inequalities.

Boundary value problems for higher order ordinary differential equations

Armando Majorana, Salvatore A. Marano (1994)

Commentationes Mathematicae Universitatis Carolinae

Let f : [ a , b ] × n + 1 be a Carath’eodory’s function. Let { t h } , with t h [ a , b ] , and { x h } be two real sequences. In this paper, the family of boundary value problems x ( k ) = f t , x , x ' , ... , x ( n ) x ( i ) ( t i ) = x i , i = 0 , 1 , ... , k - 1 ( k = n + 1 , n + 2 , n + 3 , ... ) is considered. It is proved that these boundary value problems admit at least a solution for each k ν , where ν n + 1 is a suitable integer. Some particular cases, obtained by specializing the sequence { t h } , are pointed out. Similar results are also proved for the Picard problem.

Boundary value problems for nonlinear perturbations of some ϕ-Laplacians

J. Mawhin (2007)

Banach Center Publications

This paper surveys a number of recent results obtained by C. Bereanu and the author in existence results for second order differential equations of the form (ϕ(u'))' = f(t,u,u') submitted to various boundary conditions. In the equation, ϕ: ℝ → ≤ ]-a,a[ is a homeomorphism such that ϕ(0) = 0. An important motivation is the case of the curvature operator, where ϕ(s) = s/√(1+s²). The problems are reduced to fixed point problems in suitable function space, to which Leray-Schauder...

Boundary value problems for ODEs

Tadeusz Jankowski (2003)

Czechoslovak Mathematical Journal

We use the method of quasilinearization to boundary value problems of ordinary differential equations showing that the corresponding monotone iterations converge to the unique solution of our problem and this convergence is quadratic.

Currently displaying 121 – 140 of 1042