On the two-point boundary value problem for quadratic second-order differential equations and inclusions on manifolds.
Constructive sufficient conditions for univalent resolvability of a two-point boundary value problem for nonlinear Riccati equation are obtained. An illustrative example is given.
The two-point boundary value problem is considered, where , and for . The existence of positive solutions is well-known. Several sufficient conditions have been obtained for the uniqueness of positive solutions. On the other hand, a non-uniqueness example was given by Moore and Nehari in 1959. In this paper, new uniqueness results are presented.
We propose a theoretical framework for solving a class of worst scenario problems. The existence of the worst scenario is proved through the convergence of a sequence of approximate worst scenarios. The main convergence theorem modifies and corrects the relevant results already published in literature. The theoretical framework is applied to a particular problem with an uncertain boundary value problem for a nonlinear ordinary differential equation with an uncertain coefficient.
Using the variational approach, we investigate the existence of solutions and their dependence on functional parameters for classical solutions to the second order impulsive boundary value Dirichlet problems with L1 right hand side.
In the present paper we are concerned with the problem of numerical solution of ordinary differential equations with parameters. Our method is based on a one-step procedure for IDEs combined with an iterative process. Simple sufficient conditions for the convergence of this method are obtained. Estimations of errors and some numerical examples are given.
A general theory of one-step methods for two-point boundary value problems with parameters is developed. On nonuniform nets , one-step schemes are considered. Sufficient conditions for convergence and error estimates are given. Linear or quadratic convergence is obtained by Theorem 1 or 2, respectively.
2000 Mathematics Subject Classification: 44A40, 44A35A direct algebraic construction of a family of operational calculi for the Euler differential operator δ = t d/dt is proposed. It extends the Mikusiński's approach to the Heaviside operational calculus for the case when the classical Duhamel convolution is replaced by the convolution ...