Displaying 221 – 240 of 275

Showing per page

On the solvability of a fourth-order multi-point boundary value problem

Yuqiang Feng, Xincheng Ding (2012)

Annales Polonici Mathematici

We are concerned with the solvability of the fourth-order four-point boundary value problem ⎧ u ( 4 ) ( t ) = f ( t , u ( t ) , u ' ' ( t ) ) , t ∈ [0,1], ⎨ u(0) = u(1) = 0, ⎩ au”(ζ₁) - bu”’(ζ₁) = 0, cu”(ζ₂) + du”’(ζ₂) = 0, where 0 ≤ ζ₁ < ζ₂ ≤ 1, f ∈ C([0,1] × [0,∞) × (-∞,0],[0,∞)). By using Guo-Krasnosel’skiĭ’s fixed point theorem on cones, some criteria are established to ensure the existence, nonexistence and multiplicity of positive solutions for this problem.

On the solvability of some multi-point boundary value problems

Chaitan P. Gupta, Sotiris K. Ntouyas, Panagiotis Ch. Tsamatos (1996)

Applications of Mathematics

Let f : [ 0 , 1 ] × 2 be a function satisfying Caratheodory’s conditions and let e ( t ) L 1 [ 0 , 1 ] . Let ξ i , τ j ( 0 , 1 ) , c i , a j , all of the c i ’s, (respectively, a j ’s) having the same sign, i = 1 , 2 , ... , m - 2 , j = 1 , 2 , ... , n - 2 , 0 < ξ 1 < ξ 2 < ... < ξ m - 2 < 1 , 0 < τ 1 < τ 2 < ... < τ n - 2 < 1 be given. This paper is concerned with the problem of existence of a solution for the multi-point boundary value problems x ' ' ( t ) = f ( t , x ( t ) , x ' ( t ) ) + e ( t ) , t ( 0 , 1 ) E x ( 0 ) = i = 1 m - 2 c i x ' ( ξ i ) , x ( 1 ) = j = 1 n - 2 a j x ( τ j ) B C m n and x ' ' ( t ) = f ( t , x ( t ) , x ' ( t ) ) + e ( t ) , t ( 0 , 1 ) E x ( 0 ) = i = 1 m - 2 c i x ' ( ξ i ) , x ' ( 1 ) = j = 1 n - 2 a j x ' ( τ j ) , B C m n ' Conditions for the existence of a solution for the above boundary value problems are given using Leray-Schauder Continuation theorem.

On the solvability of the Lyapunov equation for nonselfadjoint differential operators of order 2m with nonlocal boundary conditions

Aris Tersenov (2001)

Annales Polonici Mathematici

This paper is devoted to the solvability of the Lyapunov equation A*U + UA = I, where A is a given nonselfadjoint differential operator of order 2m with nonlocal boundary conditions, A* is its adjoint, I is the identity operator and U is the selfadjoint operator to be found. We assume that the spectra of A* and -A are disjoint. Under this restriction we prove the existence and uniqueness of the solution of the Lyapunov equation in the class of bounded operators.

Currently displaying 221 – 240 of 275