Displaying 61 – 80 of 290

Showing per page

Existence and multiplicity of solutions for a class of damped vibration problems with impulsive effects

Jianwen Zhou, Yongkun Li (2011)

Annales Polonici Mathematici

Some sufficient conditions on the existence and multiplicity of solutions for the damped vibration problems with impulsive effects ⎧ u”(t) + g(t)u’(t) + f(t,u(t)) = 0, a.e. t ∈ [0,T ⎨ u(0) = u(T) = 0 ⎩ Δ u ' ( t j ) = u ' ( t j - u ' ( t ¯ j ) = I j ( u ( t j ) ) , j = 1,...,p, are established, where t = 0 < t < < t p < t p + 1 = T , g ∈ L¹(0,T;ℝ), f: [0,T] × ℝ → ℝ is continuous, and I j : , j = 1,...,p, are continuous. The solutions are sought by means of the Lax-Milgram theorem and some critical point theorems. Finally, two examples are presented to illustrate the effectiveness of our results....

Existence and multiplicity of solutions for a p ( x ) -Kirchhoff type problem via variational techniques

A. Mokhtari, Toufik Moussaoui, D. O’Regan (2015)

Archivum Mathematicum

This paper discusses the existence and multiplicity of solutions for a class of p ( x ) -Kirchhoff type problems with Dirichlet boundary data of the following form - a + b Ω 1 p ( x ) | u | p ( x ) d x div ( | u | p ( x ) - 2 u ) = f ( x , u ) , i n Ω u = 0 o n Ω , where Ω is a smooth open subset of N and p C ( Ω ¯ ) with N < p - = inf x Ω p ( x ) p + = sup x Ω p ( x ) < + , a , b are positive constants and f : Ω ¯ × is a continuous function. The proof is based on critical point theory and variable exponent Sobolev space theory.

Existence and nonexistence of radial positive solutions of superlinear elliptic systems.

Abdelaziz Ahammou (2001)

Publicacions Matemàtiques

The main goal in this paper is to prove the existence of radial positive solutions of the quasilinear elliptic system⎧ -Δpu = f(x,u,v) in Ω,⎨ -Δqv = g(x,u,v) in Ω,⎩ u = v = 0 on ∂Ω,where Ω is a ball in RN and f, g are positive continuous functions satisfying f(x, 0, 0) = g(x, 0, 0) = 0 and some growth conditions which correspond, roughly speaking, to superlinear problems. Two different sets of conditions, called strongly and weakly coupled, are given in order to obtain existence. We use...

Existence and non-existence of sign-changing solutions for a class of two-point boundary value problems involving one-dimensional p -Laplacian

Yūki Naito (2011)

Mathematica Bohemica

We consider the boundary value problem involving the one dimensional p -Laplacian, and establish the precise intervals of the parameter for the existence and non-existence of solutions with prescribed numbers of zeros. Our argument is based on the shooting method together with the qualitative theory for half-linear differential equations.

Existence and positivity of solutions for a nonlinear periodic differential equation

Ernest Yankson (2012)

Archivum Mathematicum

We study the existence and positivity of solutions of a highly nonlinear periodic differential equation. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ a modification of Krasnoselskii’s fixed point theorem introduced by T. A. Burton ([4], Theorem 3) to show the existence and positivity of solutions of the equation.

Existence and stability of solutions for semilinear Dirichlet problems

Marek Galewski (2006)

Annales Polonici Mathematici

We provide existence and stability results for semilinear Dirichlet problems with nonlinearities satisfying some general local growth conditions. We derive a general abstract result which we then apply to prove the existence of solutions, their stability and continuous dependence on parameters for a sixth order ODE with Dirichlet type boundary data.

Currently displaying 61 – 80 of 290