Displaying 1041 – 1060 of 1972

Showing per page

On a nonlinear second order periodic boundaryvalue problem with Carathéodory functions

Wenjie Gao, Junyu Wang (1995)

Annales Polonici Mathematici

The periodic boundary value problem u''(t) = f(t,u(t),u'(t)) with u(0) = u(2π) and u'(0) = u'(2π) is studied using the generalized method of upper and lower solutions, where f is a Carathéodory function satisfying a Nagumo condition. The existence of solutions is obtained under suitable conditions on f. The results improve and generalize the work of M.-X. Wang et al. [5].

On a nonlocal problem for fractional integrodifferential inclusions in Banach spaces

Zuomao Yan (2011)

Annales Polonici Mathematici

This paper investigates a class of fractional functional integrodifferential inclusions with nonlocal conditions in Banach spaces. The existence of mild solutions of these inclusions is determined under mixed continuity and Carathéodory conditions by using strongly continuous operator semigroups and Bohnenblust-Karlin's fixed point theorem.

On a singular multi-point third-order boundary value problem on the half-line

Zakia Benbaziz, Smail Djebali (2020)

Mathematica Bohemica

We establish not only sufficient but also necessary conditions for existence of solutions to a singular multi-point third-order boundary value problem posed on the half-line. Our existence results are based on the Krasnosel’skii fixed point theorem on cone compression and expansion. Nonexistence results are proved under suitable a priori estimates. The nonlinearity f = f ( t , x , y ) which satisfies upper and lower-homogeneity conditions in the space variables x , y may be also singular at time t = 0 . Two examples of applications...

On a two point linear boundary value problem for system of ODEs with deviating arguments

Jan Kubalčík (2002)

Archivum Mathematicum

Two point boundary value problem for the linear system of ordinary differential equations with deviating arguments x ' ( t ) = A ( t ) x ( τ 11 ( t ) ) + B ( t ) u ( τ 12 ( t ) ) + q 1 ( t ) , u ' ( t ) = C ( t ) x ( τ 21 ( t ) ) + D ( t ) u ( τ 22 ( t ) ) + q 2 ( t ) , α 11 x ( 0 ) + α 12 u ( 0 ) = c 0 , α 21 x ( T ) + α 22 u ( T ) = c T is considered. For this problem the sufficient condition for existence and uniqueness of solution is obtained. The same approach as in [2], [3] is applied.

On a two-point boundary value problem for second order singular equations

Alexander Lomtatidze, P. Torres (2003)

Czechoslovak Mathematical Journal

The problem on the existence of a positive in the interval ] a , b [ solution of the boundary value problem u ' ' = f ( t , u ) + g ( t , u ) u ' ; u ( a + ) = 0 , u ( b - ) = 0 is considered, where the functions f and g ] a , b [ × ] 0 , + [ satisfy the local Carathéodory conditions. The possibility for the functions f and g to have singularities in the first argument (for t = a and t = b ) and in the phase variable (for u = 0 ) is not excluded. Sufficient and, in some cases, necessary and sufficient conditions for the solvability of that problem are established.

Currently displaying 1041 – 1060 of 1972