Displaying 1241 – 1260 of 1972

Showing per page

On the uniqueness of positive solutions for two-point boundary value problems of Emden-Fowler differential equations

Satoshi Tanaka (2010)

Mathematica Bohemica

The two-point boundary value problem u ' ' + h ( x ) u p = 0 , a < x < b , u ( a ) = u ( b ) = 0 is considered, where p > 1 , h C 1 [ 0 , 1 ] and h ( x ) > 0 for a x b . The existence of positive solutions is well-known. Several sufficient conditions have been obtained for the uniqueness of positive solutions. On the other hand, a non-uniqueness example was given by Moore and Nehari in 1959. In this paper, new uniqueness results are presented.

On the worst scenario method: a modified convergence theorem and its application to an uncertain differential equation

Petr Harasim (2008)

Applications of Mathematics

We propose a theoretical framework for solving a class of worst scenario problems. The existence of the worst scenario is proved through the convergence of a sequence of approximate worst scenarios. The main convergence theorem modifies and corrects the relevant results already published in literature. The theoretical framework is applied to a particular problem with an uncertain boundary value problem for a nonlinear ordinary differential equation with an uncertain coefficient.

On unbounded solutions for differential equations with mean curvature operator

Zuzana Došlá, Mauro Marini, Serena Matucci (2025)

Czechoslovak Mathematical Journal

We present necessary and sufficient conditions for the existence of unbounded increasing solutions to ordinary differential equations with mean curvature operator. The results illustrate the asymptotic proximity of such solutions with those of an auxiliary linear equation on the threshold of oscillation. A new oscillation criterion for equations with mean curvature operator, extending Leighton criterion for linear Sturm-Liouville equation, is also derived.

Currently displaying 1241 – 1260 of 1972