Displaying 21 – 40 of 192

Showing per page

Similarity solutions for high frequency excitation of liquid metal in an antisymmetric magnetic field

Bernard Brighi, Jean-David Hoernel (2006)

Banach Center Publications

The aim of this paper is to investigate, as precisely as possible, a boundary value problem involving a third order ordinary differential equation. Its solutions are the similarity solutions of a problem arising in the study of the phenomenon of high frequency excitation of liquid metal systems in an antisymmetric magnetic field within the framework of boundary layer approximation.

Singular Dirichlet boundary value problems. II: Resonance case

Donal O'Regan (1998)

Czechoslovak Mathematical Journal

Existence results are established for the resonant problem y ' ' + λ m a y = f ( t , y ) a.e. on [ 0 , 1 ] with y satisfying Dirichlet boundary conditions. The problem is singular since f is a Carathéodory function, a L l o c 1 ( 0 , 1 ) with a > 0 a.e. on [ 0 , 1 ] and 0 1 x ( 1 - x ) a ( x ) d x < .

Singular Dirichlet problem for ordinary differential equations with φ -Laplacian

Vladimír Polášek, Irena Rachůnková (2005)

Mathematica Bohemica

We provide sufficient conditions for solvability of a singular Dirichlet boundary value problem with - L a p l a c i a n . ((u)) = f(t, u, u), u(0) = A, u(T) = B, . w h e r e is an increasing homeomorphism, ( ) = , ( 0 ) = 0 , f satisfies the Carathéodory conditions on each set [ a , b ] × 2 with [ a , b ] ( 0 , T ) and f is not integrable on [ 0 , T ] for some fixed values of its phase variables. We prove the existence of a solution which has continuous first derivative on [ 0 , T ] .

Singular eigenvalue problems for second order linear ordinary differential equations

Árpád Elbert, Takaŝi Kusano, Manabu Naito (1998)

Archivum Mathematicum

We consider linear differential equations of the form ( p ( t ) x ' ) ' + λ q ( t ) x = 0 ( p ( t ) > 0 , q ( t ) > 0 ) ( A ) on an infinite interval [ a , ) and study the problem of finding those values of λ for which () has principal solutions x 0 ( t ; λ ) vanishing at t = a . This problem may well be called a singular eigenvalue problem, since requiring x 0 ( t ; λ ) to be a principal solution can be considered as a boundary condition at t = . Similarly to the regular eigenvalue problems for () on compact intervals, we can prove a theorem asserting that there exists a sequence { λ n } of eigenvalues such...

Singular nonlinear problem for ordinary differential equation of the second order

Irena Rachůnková, Jan Tomeček (2007)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The paper deals with the singular nonlinear problem u ' ' ( t ) + f ( t , u ( t ) , u ' ( t ) ) = 0 , u ( 0 ) = 0 , u ' ( T ) = ψ ( u ( T ) ) , where f 𝐶𝑎𝑟 ( ( 0 , T ) × D ) , D = ( 0 , ) × . We prove the existence of a solution to this problem which is positive on ( 0 , T ] under the assumption that the function f ( t , x , y ) is nonnegative and can have time singularities at t = 0 , t = T and space singularity at x = 0 . The proof is based on the Schauder fixed point theorem and on the method of a priori estimates.

Singular problems on the half-line

Irena Rachůnková, Jan Tomeček (2009)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The paper investigates singular nonlinear problems arising in hydrodynamics. In particular, it deals with the problem on the half-line of the form ( p ( t ) u ' ( t ) ) ' = p ( t ) f ( u ( t ) ) , u ' ( ...

Currently displaying 21 – 40 of 192