Sign conditions in nonlinear boundary value problems
The aim of this paper is to investigate, as precisely as possible, a boundary value problem involving a third order ordinary differential equation. Its solutions are the similarity solutions of a problem arising in the study of the phenomenon of high frequency excitation of liquid metal systems in an antisymmetric magnetic field within the framework of boundary layer approximation.
Existence results are established for the resonant problem a.e. on with satisfying Dirichlet boundary conditions. The problem is singular since is a Carathéodory function, with a.e. on and .
We provide sufficient conditions for solvability of a singular Dirichlet boundary value problem with . ((u)) = f(t, u, u), u(0) = A, u(T) = B, . is an increasing homeomorphism, , , satisfies the Carathéodory conditions on each set with and is not integrable on for some fixed values of its phase variables. We prove the existence of a solution which has continuous first derivative on .
We consider linear differential equations of the form on an infinite interval and study the problem of finding those values of for which () has principal solutions vanishing at . This problem may well be called a singular eigenvalue problem, since requiring to be a principal solution can be considered as a boundary condition at . Similarly to the regular eigenvalue problems for () on compact intervals, we can prove a theorem asserting that there exists a sequence of eigenvalues such...
The paper deals with the singular nonlinear problem where , . We prove the existence of a solution to this problem which is positive on under the assumption that the function is nonnegative and can have time singularities at , and space singularity at . The proof is based on the Schauder fixed point theorem and on the method of a priori estimates.
In this paper we present some new existence results for singular positone and semipositone boundary value problems of second order delay differential equations. Throughout our nonlinearity may be singular in its dependent variable.
The paper investigates singular nonlinear problems arising in hydrodynamics. In particular, it deals with the problem on the half-line of the form