Displaying 101 – 120 of 240

Showing per page

On limit cycles of piecewise differential systems formed by arbitrary linear systems and a class of quadratic systems

Aziza Berbache (2023)

Mathematica Bohemica

We study the continuous and discontinuous planar piecewise differential systems separated by a straight line and formed by an arbitrary linear system and a class of quadratic center. We show that when these piecewise differential systems are continuous, they can have at most one limit cycle. However, when the piecewise differential systems are discontinuous, we show that they can have at most two limit cycles, and that there exist such systems with two limit cycles. Therefore, in particular, we...

On the center of the generalized Liénard system

Cheng Dong Zhao, Qi-Min He (2002)

Czechoslovak Mathematical Journal

In this paper, we discuss the conditions for a center for the generalized Liénard system d x d t = ϕ ( y ) - F ( x ) , d y d t = - g ( x ) , or d x d t = ψ ( y ) , dy d t = - f ( x ) h ( y ) - g ( x ) , with f ( x ) , g ( x ) , ϕ ( y ) , ψ ( y ) , h ( y ) , F ( x ) = 0 x f ( x ) d x , and x g ( x ) > 0 for x 0 . By using a different technique, that is, by introducing auxiliary systems and using the differential inquality theorem, we are able to generalize and improve some results in [1], [2].

On the limit cycle of the Liénard equation

Kenzi Odani (2000)

Archivum Mathematicum

In the paper, we give an existence theorem of periodic solution for Liénard equation x ˙ = y - F ( x ) , y ˙ = - g ( x ) . As a result, we estimate the amplitude ρ ( μ ) (maximal x -value) of the limit cycle of the van der Pol equation x ˙ = y - μ ( x 3 / 3 - x ) , y ˙ = - x from above by ρ ( μ ) < 2 . 3439 for every μ 0 . The result is an improvement of the author’s previous estimation ρ ( μ ) < 2 . 5425 .

On the Poincaré-Lyapunov constants and the Poincare series

Jaume Giné, Xavier Santallusia (2001)

Applicationes Mathematicae

For an arbitrary analytic system which has a linear center at the origin we compute recursively all its Poincare-Lyapunov constants in terms of the coefficients of the system, giving an answer to the classical center problem. We also compute the coefficients of the Poincare series in terms of the same coefficients. The algorithm for these computations has an easy implementation. Our method does not need the computation of any definite or indefinite integral. We apply the algorithm to some polynomial...

On ω -limit sets of nonautonomous differential equations

Boris S. Klebanov (1994)

Commentationes Mathematicae Universitatis Carolinae

In this paper the ω -limit behaviour of trajectories of solutions of ordinary differential equations is studied by methods of an axiomatic theory of solution spaces. We prove, under very general assumptions, semi-invariance of ω -limit sets and a Poincar’e-Bendixon type theorem.

Oscillatory properties of some classes of nonlinear differential equations

Milan Medveď (1992)

Mathematica Bohemica

A sufficient condition for the nonoscillation of nonlinear systems of differential equations whose left-hand sides are given by n -th order differential operators which are composed of special nonlinear differential operators of the first order is established. Sufficient conditions for the oscillation of systems of two nonlinear second order differential equations are also presented.

Currently displaying 101 – 120 of 240