Displaying 121 – 140 of 240

Showing per page

Periodic solutions of the Rayleigh equation with damping of definite sign

Pierpaolo Omari, Gabriele Villari (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The existence of a non-trivial periodic solution for the autonomous Rayleigh equation x ¨ + F x ˙ + g x = 0 is proved, assuming conditions which do not imply that F x x has a definite sign for x large. A similar result is obtained for the periodically forced equation x ¨ + F x ˙ + g x = e t .

Polynomial Riccati equations with algebraic solutions

Henryk Żołądek (2002)

Banach Center Publications

We consider the equations of the form dy/dx = y²-P(x) where P are polynomials. We characterize the possible algebraic solutions and the class of equations having such solutions. We present formulas for first integrals of rational Riccati equations with an algebraic solution. We also present a relation between the problem of algebraic solutions and the theory of random matrices.

Pseudo-abelian integrals on slow-fast Darboux systems

Marcin Bobieński, Pavao Mardešić, Dmitry Novikov (2013)

Annales de l’institut Fourier

We study pseudo-abelian integrals associated with polynomial deformations of slow-fast Darboux integrable systems. Under some assumptions we prove local boundedness of the number of their zeros.

Quadratic Isochronous centers commute

M. Sabatini (1999)

Applicationes Mathematicae

We prove that every quadratic plane differential system having an isochronous center commutes with a polynomial differential system.

Quadratic systems with a unique finite rest point.

Bartomeu Coll, Armengol Gasull, Jaume Llibre (1988)

Publicacions Matemàtiques

We study phase portraits of quadratic systems with a unique finite singularity. We prove that there are 111 different phase portraits without limit cycles and that 13 of them are realizable with exactly one limit cycle. In order to finish completely our study two problems remain open: the realization of one topologically possible phase portrait, and to determine the exact number of limit cycles for a subclass of these systems.

Quadratic vector fields with a weak focus of third order.

Joan C. Artés, Jaume Llibre (1997)

Publicacions Matemàtiques

We study phase portraits of quadratic vector fields with a weak focus of third order at the origin. We show numerically the existence of at least 20 different global phase portraits for such vector fields coming from exactly 16 different local phase portraits available for these vector fields. Among these 20 phase portraits, 17 have no limit cycles and three have at least one limit cycle.

Réversibilité et classification des centres nilpotents

Michel Berthier, Robert Moussu (1994)

Annales de l'institut Fourier

Nous considérons un germe ω de 1-forme analytique dans 2 , 0 dont le 1-jet est y d y . Nous montrons que si l’équation ω = 0 définit un centre (i.e toutes les courbes solutions sont des cycles) il existe une involution analytique de 2 , 0 préservant le portrait de phase du système. Géométriquement ceci signifie que les centres analytiques nilpotents sont obtenus par image réciproque par des applications pli. Un théorème de conjugaison équivariante permet d’obtenir une classification complète de ces centres.

Currently displaying 121 – 140 of 240