Displaying 181 – 200 of 804

Showing per page

Existence and non-existence of sign-changing solutions for a class of two-point boundary value problems involving one-dimensional p -Laplacian

Yūki Naito (2011)

Mathematica Bohemica

We consider the boundary value problem involving the one dimensional p -Laplacian, and establish the precise intervals of the parameter for the existence and non-existence of solutions with prescribed numbers of zeros. Our argument is based on the shooting method together with the qualitative theory for half-linear differential equations.

Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations

Luisa Malaguti, Valentina Taddei (2005)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The paper deals with the quasi-linear ordinary differential equation ( r ( t ) ϕ ( u ' ) ) ' + g ( t , u ) = 0 with t [ 0 , ) . We treat the case when g is not necessarily monotone in its second argument and assume usual conditions on r ( t ) and ϕ ( u ) . We find necessary and sufficient conditions for the existence of unbounded non-oscillatory solutions. By means of a fixed point technique we investigate their growth, proving the coexistence of solutions with different asymptotic behaviors. The results generalize previous ones due to Elbert–Kusano, [Acta...

Forced oscillation of third order nonlinear dynamic equations on time scales

Baoguo Jia (2010)

Annales Polonici Mathematici

Consider the third order nonlinear dynamic equation x Δ Δ Δ ( t ) + p ( t ) f ( x ) = g ( t ) , (*) on a time scale which is unbounded above. The function f ∈ C(,) is assumed to satisfy xf(x) > 0 for x ≠ 0 and be nondecreasing. We study the oscillatory behaviour of solutions of (*). As an application, we find that the nonlinear difference equation Δ ³ x ( n ) + n α | x | γ s g n ( n ) = ( - 1 ) n c , where α ≥ -1, γ > 0, c > 3, is oscillatory.

Friedrichs extension of operators defined by linear Hamiltonian systems on unbounded interval

Roman Šimon Hilscher, Petr Zemánek (2010)

Mathematica Bohemica

In this paper we consider a linear operator on an unbounded interval associated with a matrix linear Hamiltonian system. We characterize its Friedrichs extension in terms of the recessive system of solutions at infinity. This generalizes a similar result obtained by Marletta and Zettl for linear operators defined by even order Sturm-Liouville differential equations.

Currently displaying 181 – 200 of 804