Displaying 381 – 400 of 804

Showing per page

On property (B) of higher order delay differential equations

Blanka Baculíková, Jozef Džurina (2012)

Archivum Mathematicum

In this paper we offer criteria for property (B) and additional asymptotic behavior of solutions of the n -th order delay differential equations ( r ( t ) [ x ( n - 1 ) ( t ) ] γ ) ' = q ( t ) f ( x ( τ ( t ) ) ) . Obtained results essentially use new comparison theorems, that permit to reduce the problem of the oscillation of the n-th order equation to the the oscillation of a set of certain the first order equations. So that established comparison principles essentially simplify the examination of studied equations. Both cases r - 1 / γ ( t ) t = and r - 1 / γ ( t ) t < are discussed.

On some boundary value problems for second order nonlinear differential equations

Zuzana Došlá, Mauro Marini, Serena Matucci (2012)

Mathematica Bohemica

We investigate two boundary value problems for the second order differential equation with p -Laplacian ( a ( t ) Φ p ( x ' ) ) ' = b ( t ) F ( x ) , t I = [ 0 , ) , where a , b are continuous positive functions on I . We give necessary and sufficient conditions which guarantee the existence of a unique (or at least one) positive solution, satisfying one of the following two boundary conditions: i ) x ( 0 ) = c > 0 , lim t x ( t ) = 0 ; ii ) x ' ( 0 ) = d < 0 , lim t x ( t ) = 0 .

On some properties of the solution of the differential equation u ' ' + 2 u ' r = u - u 3

Valter Šeda, Ján Pekár (1990)

Aplikace matematiky

In the paper it is shown that each solution u ( r , α ) ot the initial value problem (2), (3) has a finite limit for r , and an asymptotic formula for the nontrivial solution u ( r , α ) tending to 0 is given. Further, the existence of such a solutions is established by examining the number of zeros of two different solutions u ( r , α ¯ ) , u ( r , α ^ ) .

Currently displaying 381 – 400 of 804