A Note on the Covergence of Solutions of a System of Differential Equations.
In the paper some existence results for periodic boundary value problems for the ordinary differential equation of the second order in a Hilbert space are given. Under some auxiliary assumptions the set of solutions is compact and connected or it is convex.
In this paper periodic time-dependent Lotka-Volterra systems are considered. It is shown that such a system has positive periodic solutions. It is done without constructive conditions over the period and the parameters.
We prove the existence and uniqueness of a positive periodic solution for a model describing the dynamics of cell volume flux, introduced by Julio A. Hernández [Bull. Math. Biol. 69 (2007), 1631-1648]. We also show that the periodic solution is a global attractor. Our results confirm the conjectures made in an interesting recent book of P. J. Torres [Atlantis Press, 2015].
We investigate a Lotka-Volterra predator-prey model with state dependent impulsive effects, in which the control strategies by releasing natural enemies and spraying pesticide at different thresholds are considered. We present some sufficient conditions to guarantee the existence and asymptotical stability of semi-trivial periodic solutions and positive periodic solutions.
A system of ordinary differential equations modelling an electric circuit with a thermistor is considered. Qualitative properties of solution are studied, in particular, the existence and nonexistence of time-periodic solutions (the Hopf bifurcation).
We provide a theoretical study of the iterative hard thresholding with partially known support set (IHT-PKS) algorithm when used to solve the compressed sensing recovery problem. Recent work has shown that IHT-PKS performs better than the traditional IHT in reconstructing sparse or compressible signals. However, less work has been done on analyzing the performance guarantees of IHT-PKS. In this paper, we improve the current RIP-based bound of IHT-PKS algorithm from to , where is the restricted...
We consider a class of singularly perturbed systems of semilinear parabolic differential inclusions in infinite dimensional spaces. For such a class we prove a Tikhonov-type theorem for a suitably defined subset of the set of all solutions for ε ≥ 0, where ε is the perturbation parameter. Specifically, assuming the existence of a Lipschitz selector of the involved multivalued maps we can define a nonempty subset of the solution set of the singularly perturbed system. This subset is the set of...