Homoclinic solutions for linear and linearizable ordinary differential equations.
By using the critical point method, some new criteria are obtained for the existence and multiplicity of homoclinic solutions to a 2nth-order nonlinear difference equation. The proof is based on the Mountain Pass Lemma in combination with periodic approximations. Our results extend and improve some known ones.
We prove the existence of infinitely many geometrically distinct homoclinic orbits for a class of asymptotically periodic second order Hamiltonian systems.
This paper concerns the global structure of planar systems. It is shown that if a positively bounded system with two singular points has no closed orbits, the set of all bounded solutions is compact and simply connected. Also it is shown that for such a system the existence of connecting orbits is tightly related to the behavior of homoclinic orbits. A necessary and sufficient condition for the existence of connecting orbits is given. The number of connecting orbits is also discussed.
We consider perturbations of n-dimensional maps having homo-heteroclinic connections of compact normally hyperbolic invariant manifolds. We justify the applicability of the Poincaré-Melnikov method by following a geometric approach. Several examples are included.