Displaying 41 – 60 of 80

Showing per page

Orbits connecting singular points in the plane

Changming Ding (2005)

Czechoslovak Mathematical Journal

This paper concerns the global structure of planar systems. It is shown that if a positively bounded system with two singular points has no closed orbits, the set of all bounded solutions is compact and simply connected. Also it is shown that for such a system the existence of connecting orbits is tightly related to the behavior of homoclinic orbits. A necessary and sufficient condition for the existence of connecting orbits is given. The number of connecting orbits is also discussed.

Poincaré-Melnikov theory for n-dimensional diffeomorphisms

M. Baldomà, E. Fontich (1998)

Applicationes Mathematicae

We consider perturbations of n-dimensional maps having homo-heteroclinic connections of compact normally hyperbolic invariant manifolds. We justify the applicability of the Poincaré-Melnikov method by following a geometric approach. Several examples are included.

Currently displaying 41 – 60 of 80