Qualitative analysis for a class of plane systems.
Henri Poincaré avait déjà remarqué que les variétés stable et instable du pendule perturbé, défini par l’hamiltonienne coïncident pas lorsque que le paramètre n’est pas nul, mais qu’on peut leur associer un même développement formel divergent en puissance de . Cette divergence est ici analysée au moyen de la récente théorie de la résurgence, et du calcul étranger qui permet de trouver un équivalent asymptotique de l’écart des deux variétés pour tendant vers zéro - du moins cela est-il montré...
Some problems in differential equations evolve towards Topology from an analytical origin. Two such problems will be discussed: the existence of solutions asymptotic to the equilibrium and the stability of closed orbits of Hamiltonian systems. The theory of retracts and the fixed point index have become useful tools in the study of these questions.
We propose a new rigorous numerical technique to prove the existence of symmetric homoclinic orbits in reversible dynamical systems. The essential idea is to calculate Melnikov functions by the exponential dichotomy and the rigorous numerics. The algorithm of our method is explained in detail by dividing into four steps. An application to a two dimensional reversible system is also treated and the existence of a symmetric homoclinic orbit is rigorously verified as an example.
A second-order Hamiltonian system with time recurrence is studied. The recurrence condition is weaker than almost periodicity. The existence is proven of an infinite family of solutions homoclinic to zero whose support is spread out over the real line.
The paper investigates singular nonlinear problems arising in hydrodynamics. In particular, it deals with the problem on the half-line of the form
We consider a planar autonomous Hamiltonian system :q+∇V(q) = 0, where the potential V: ℝ2 {ζ→ ℝ has a single well of infinite depth at some point ζ and a strict global maximum 0at two distinct points a and b. Under a strong force condition around the singularity ζ we will prove a lemma on the existence and multiplicity of heteroclinic and homoclinic orbits - the shadowing chain lemma - via minimization of action integrals and using simple geometrical arguments.
The existence of a traveling wave with special properties to modified KdV and BKdV equations is proved. Nonlinear terms in the equations are defined by means of a function f of an unknown u satisfying some conditions.