Antiperiodic solutions for Liénard-type differential equation with -Laplacian operator.
Un algorithme est présenté pour calculer en toute généralité le « réseau de Levelt » pour un réseau donné.
The behavior of the approximate solutions of two-dimensional nonlinear differential systems with variable coefficients is considered. Using a property of the approximate solution, so called conditional Ulam stability of a generalized logistic equation, the behavior of the approximate solution of the system is investigated. The obtained result explicitly presents the error between the limit cycle and its approximation. Some examples are presented with numerical simulations.
The present paper does not introduce a new approximation but it modifies a certain known method. This method for obtaining a periodic approximation of a periodic solution of a linear nonhomogeneous differential equation with periodic coefficients and periodic right-hand side is used in technical practice. However, the conditions ensuring the existence of a periodic solution may be violated and therefore the purpose of this paper is to modify the method in order that these conditions remain valid....
In this work we will consider a class of second order perturbed Hamiltonian systems of the form , where t ∈ ℝ, q ∈ ℝⁿ, with a superquadratic growth condition on a time periodic potential V: ℝ × ℝⁿ → ℝ and a small aperiodic forcing term f: ℝ → ℝⁿ. To get an almost homoclinic solution we approximate the original system by time periodic ones with larger and larger time periods. These approximative systems admit periodic solutions, and an almost homoclinic solution for the original system is obtained...