Displaying 441 – 460 of 567

Showing per page

Oscillation criteria for a class of nonlinear differential equations of third order

N. Parhi, P. Das (1992)

Annales Polonici Mathematici

Oscillation criteria are obtained for nonlinear homogeneous third order differential equations of the form y ' ' ' + q ( t ) y ' + p ( t ) y α = 0 and y”’ + q(t)y’ + p(t)f(y) = 0, where p and q are real-valued continuous functions on [a,∞), f is a real-valued continuous function on (-∞, ∞) and α > 0 is a quotient of odd integers. Sign restrictions are imposed on p(t) and q(t). These results generalize some of the results obtained earlier in this direction.

Oscillation criteria for fourth order half-linear differential equations

Jaroslav Jaroš, Kusano Takaŝi, Tomoyuki Tanigawa (2020)

Archivum Mathematicum

Criteria for oscillatory behavior of solutions of fourth order half-linear differential equations of the form ( | y ' ' | α sgn y ' ' ) ' ' + q ( t ) | y | α sgn y = 0 , t a > 0 , A where α > 0 is a constant and q ( t ) is positive continuous function on [ a , ) , are given in terms of an increasing continuously differentiable function ω ( t ) from [ a , ) to ( 0 , ) which satisfies a 1 / ( t ω ( t ) ) d t < .

Oscillation Criteria for Nonlinear Differential Equations of Second Order with Damping Term

Elabbasy, E. M., Elhaddad, W. W. (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 34C10, 34C15.Some new criteria for the oscillation of all solutions of second order differential equations of the form (d/dt)(r(t)ψ(x)|dx/dt|α−2(dx/dt))+ p(t)φ(|x|α−2x,r(t) ψ(x)|dx/dt|α−2(dx/dt))+q(t)|x|α−2 x=0, and the more general equation (d/dt)(r(t)ψ(x)|dx/dt|α−2(dx/dt))+p(t)φ(g(x),r(t) ψ(x)|dx/dt|α−2 (dx/dt))+q(t)g(x)=0, are established. our results generalize and extend some known oscillation criterain in the literature.

Oscillation criteria for two dimensional linear neutral delay difference systems

Arun Kumar Tripathy (2023)

Mathematica Bohemica

In this work, necessary and sufficient conditions for the oscillation of solutions of 2-dimensional linear neutral delay difference systems of the form Δ x ( n ) + p ( n ) x ( n - m ) y ( n ) + p ( n ) y ( n - m ) = a ( n ) b ( n ) c ( n ) d ( n ) x ( n - α ) y ( n - β ) are established, where m > 0 , α 0 , β 0 are integers and a ( n ) , b ( n ) , c ( n ) , d ( n ) , p ( n ) are sequences of real numbers.

Currently displaying 441 – 460 of 567