On slow oscillation and nonoscillation in retarded equations.
We investigate two boundary value problems for the second order differential equation with -Laplacian where , are continuous positive functions on . We give necessary and sufficient conditions which guarantee the existence of a unique (or at least one) positive solution, satisfying one of the following two boundary conditions:
In the paper it is shown that each solution ot the initial value problem (2), (3) has a finite limit for , and an asymptotic formula for the nontrivial solution tending to 0 is given. Further, the existence of such a solutions is established by examining the number of zeros of two different solutions , .
We consider a neutral type operator differential inclusion and apply the topological degree theory for condensing multivalued maps to justify the question of existence of its periodic solution. By using the averaging method, we apply the abstract result to an inclusion with a small parameter. As example, we consider a delay control system with the distributed control.