Displaying 121 – 140 of 2541

Showing per page

A sufficient condition for a polynomial centre to be global

Marco Sabatini (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A sufficient condition is given in order that a centre of a polynomial planar autonomous system be a global centre.

A tight bound of modified iterative hard thresholding algorithm for compressed sensing

Jinyao Ma, Haibin Zhang, Shanshan Yang, Jiaojiao Jiang (2023)

Applications of Mathematics

We provide a theoretical study of the iterative hard thresholding with partially known support set (IHT-PKS) algorithm when used to solve the compressed sensing recovery problem. Recent work has shown that IHT-PKS performs better than the traditional IHT in reconstructing sparse or compressible signals. However, less work has been done on analyzing the performance guarantees of IHT-PKS. In this paper, we improve the current RIP-based bound of IHT-PKS algorithm from δ 3 s - 2 k < 1 32 0 . 1768 to δ 3 s - 2 k < 5 - 1 4 0 . 309 , where δ 3 s - 2 k is the restricted...

A Tikhonov-type theorem for abstract parabolic differential inclusions in Banach spaces

Anastasie Gudovich, Mikhail Kamenski, Paolo Nistri (2001)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We consider a class of singularly perturbed systems of semilinear parabolic differential inclusions in infinite dimensional spaces. For such a class we prove a Tikhonov-type theorem for a suitably defined subset of the set of all solutions for ε ≥ 0, where ε is the perturbation parameter. Specifically, assuming the existence of a Lipschitz selector of the involved multivalued maps we can define a nonempty subset Z L ( ε ) of the solution set of the singularly perturbed system. This subset is the set of...

A version of non-Hamiltonian Liouville equation

Celina Rom (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we give a version of the theorem on local integral invariants of systems of ordinary differential equations. We give, as an immediate conclusion of this theorem, a condition which guarantees existence of an invariant measure of local dynamical systems. Results of this type lead to the Liouville equation and have been frequently proved under various assumptions. Our method of the proof is simpler and more direct.

Currently displaying 121 – 140 of 2541