Displaying 381 – 400 of 930

Showing per page

Linear Stability of Fractional Reaction - Diffusion Systems

Y. Nec, A. A. Nepomnyashchy (2010)

Mathematical Modelling of Natural Phenomena

Theoretical framework for linear stability of an anomalous sub-diffusive activator-inhibitor system is set. Generalized Turing instability conditions are found to depend on anomaly exponents of various species. In addition to monotonous instability, known from normal diffusion, in an anomalous system oscillatory modes emerge. For equal anomaly exponents for both species the type of unstable modes is determined by the ratio of the reactants' diffusion coefficients. When the ratio exceeds its normal...

Local Bifurcations in a Nonlinear Model of a Bioreactor

Dimitrova, Neli (2009)

Serdica Journal of Computing

This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02– 359/2008.We consider a nonlinear model of a continuously stirred bioreactor and study the stability of the equilibrium points with respect to practically important model parameters. We determine regions in the parameter space where the steady states undergo transcritical and Hopf bifurcations. In the latter case, the stability of the emerged limit cycles is also studied. Numerical simulations in the computer algebra...

Mathematical analysis of a within-host model of malaria with immune effectors and Holling type II functional response

F. Gazori, M. Hesaaraki (2015)

Applicationes Mathematicae

In this paper, we consider a within-host model of malaria with Holling type II functional response. The model describes the dynamics of the blood-stage of parasites and their interaction with host cells, in particular red blood cells and immune effectors. First, we obtain equilibrium points of the system. The global stability of the disease-free equilibrium point is established when the basic reproduction ratio of infection is R₀< 1. Then the disease is controllable and dies out. In the absence...

Mathematical modeling of antigenicity for HIV dynamics

François Dubois, Hervé V.J. Le Meur, Claude Reiss (2010)

MathematicS In Action

This contribution is devoted to a new model of HIV multiplication motivated by the patent of one of the authors. We take into account the antigenic diversity through what we define “antigenicity”, whether of the virus or of the adapted lymphocytes. We model the interaction of the immune system and the viral strains by two processes. On the one hand, the presence of a given viral quasi-species generates antigenically adapted lymphocytes. On the other hand, the lymphocytes kill only viruses for which...

Mathematical Modeling of Leukemogenesis and Cancer Stem Cell Dynamics

T. Stiehl, A. Marciniak-Czochra (2012)

Mathematical Modelling of Natural Phenomena

The cancer stem cell hypothesis has evolved to one of the most important paradigms in biomedical research. During recent years evidence has been accumulating for the existence of stem cell-like populations in different cancers, especially in leukemias. In the current work we propose a mathematical model of cancer stem cell dynamics in leukemias. We apply the model to compare cellular properties of leukemic stem cells to those of their benign counterparts....

Currently displaying 381 – 400 of 930