Displaying 461 – 480 of 933

Showing per page

On Existence and Asymptotic Properties of Kneser Solutions to Singular Second Order ODE.

Jana Vampolová (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We investigate an asymptotic behaviour of damped non-oscillatory solutions of the initial value problem with a time singularity p ( t ) u ' ( t ) ' + p ( t ) f ( u ( t ) ) = 0 , u ( 0 ) = u 0 , u ' ( 0 ) = 0 on the unbounded domain [ 0 , ) . Function f is locally Lipschitz continuous on and has at least three zeros L 0 < 0 , 0 and L > 0 . The initial value u 0 ( L 0 , L ) { 0 } . Function p is continuous on [ 0 , ) , has a positive continuous derivative on ( 0 , ) and p ( 0 ) = 0 . Asymptotic formulas for damped non-oscillatory solutions and their first derivatives are derived under some additional assumptions. Further, we provide...

On Lyapunov stability in hypoplasticity

Kovtunenko, Victor A., Krejčí, Pavel, Bauer, Erich, Siváková, Lenka, Zubkova, Anna V. (2017)

Proceedings of Equadiff 14

We investigate the Lyapunov stability implying asymptotic behavior of a nonlinear ODE system describing stress paths for a particular hypoplastic constitutive model of the Kolymbas type under proportional, arbitrarily large monotonic coaxial deformations. The attractive stress path is found analytically, and the asymptotic convergence to the attractor depending on the direction of proportional strain paths and material parameters of the model is proved rigorously with the help of a Lyapunov function....

On Newton's polygons, Gröbner bases and series expansions of perturbed polynomial programs

Konstantin Avrachenkov, Vladimir Ejov, Jerzy A. Filar (2006)

Banach Center Publications

In this note we consider a perturbed mathematical programming problem where both the objective and the constraint functions are polynomial in all underlying decision variables and in the perturbation parameter ε. Recently, the theory of Gröbner bases was used to show that solutions of the system of first order optimality conditions can be represented as Puiseux series in ε in a neighbourhood of ε = 0. In this paper we show that the determination of the branching order and the order of the pole (if...

On peaks in carrying simplices

Janusz Mierczyński (1999)

Colloquium Mathematicae

A necessary and sufficient condition is given for the carrying simplex of a dissipative totally competitive system of three ordinary differential equations to have a peak singularity at an axial equilibrium. For systems of Lotka-Volterra type that result translates into a simple condition on the coefficients.

On perturbation of continuous maps

Maria Carbinatto (1999)

Banach Center Publications

In [1], the concept of singular isolating neighborhoods for a continuous family of continuous maps was presented. The work was based on Conley's result for a continuous family of continuous flows (cf. [2]). In this note, we study a particular family of continuous maps to illustrate the results in [1].

Currently displaying 461 – 480 of 933