Existence and global attractivity of positive periodic solutions for a delayed competitive system with the effect of toxic substances and impulses
In this paper, a class of non-autonomous delayed competitive systems with the effect of toxic substances and impulses is considered. By using the continuation theorem of coincidence degree theory, we derive a set of easily verifiable sufficient conditions that guarantees the existence of at least one positive periodic solution, and by constructing a suitable Lyapunov functional, the uniqueness and global attractivity of the positive periodic solution are established.