Kalecki's model of business cycle. Data dependence.
The aim of this paper is to present some approaches to tumour growth modelling using the logistic equation. As the first approach the well-known ordinary differential equation is used to model the EAT in mice. For the same kind of tumour, a logistic equation with time delay is also used. As the second approach, a logistic equation with diffusion is proposed. In this case a delay argument in the reaction term is also considered. Some mathematical properties of the presented models are studied in...
Recent discovery of cancer stem cells in tumorigenic tissues has raised many questions about their nature, origin, function and their behavior in cell culture. Most of current experiments reporting a dynamics of cancer stem cell populations in culture show the eventual stability of the percentages of these cell populations in the whole population of cancer cells, independently of the starting conditions. In this paper we propose a mathematical model...
We present and compare two simple models of immune system and cancer cell interactions. The first model reflects simple cancer disease progression and serves as our "control" case. The second describes the progression of a cancer disease in the case of a patient infected with the HIV-1 virus.
We consider a mathematical model of nutrient-autotroph-herbivore interaction with nutrient recycling from both autotroph and herbivore. Local and global stability criteria of the model are studied in terms of system parameters. Next we incorporate the time required for recycling of nutrient from herbivore as a constant discrete time delay. The resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we assume the recycling delay in the oscillatory form to model the...
In this paper, we consider a system of nonlinear delay-differential equations (DDEs) which models the dynamics of the interaction between chronic myelogenous leukemia (CML), imatinib, and the anti-leukemia immune response. Because of the chaotic nature of the dynamics and the sparse nature of experimental data, we look for ways to use computation to analyze the model without employing direct numerical simulation. In particular, we develop several tools using Lyapunov-Krasovskii analysis that allow...
This paper is concerned with a class of Nicholson's blowflies models with multiple time-varying delays, which is defined on the nonnegative function space. Under appropriate conditions, we establish some criteria to ensure that all solutions of this model converge globally exponentially to a positive almost periodic solution. Moreover, we give an example with numerical simulations to illustrate our main results.
We propose and analyze a nonlinear mathematical model of hematopoiesis, describing the dynamics of stem cell population subject to impulsive perturbations. This is a system of two age-structured partial differential equations with impulses. By integrating these equations over the age, we obtain a system of two nonlinear impulsive differential equations with several discrete delays. This system describes the evolution of the total hematopoietic stem cell populations with impulses. We first examine...
We study the coexistence of multiple periodic solutions for an analogue of the integrate-and-fire neuron model of two-neuron recurrent inhibitory loops with delayed feedback, which incorporates the firing process and absolute refractory period. Upon receiving an excitatory signal from the excitatory neuron, the inhibitory neuron emits a spike with a pattern-related delay, in addition to the synaptic delay. We present a theoretical framework to view...
The authors use coincidence degree theory to establish some new results on the existence of T-periodic solutions for the delay differential equation x''(t) + a₁x'(t) + a₂(xⁿ(t))' + a₃x(t)+ a₄x(t-τ) + a₅xⁿ(t) + a₆xⁿ(t-τ) = f(t), which appears in a model of a power system. These results are of practical significance.
Existence and stability of periodic solutions are studied for a system of delay differential equations with two delays, with periodic coefficients. It models the evolution of hematopoietic stem cells and mature neutrophil cells in chronic myelogenous leukemia under a periodic treatment that acts only on mature cells. Existence of a guiding function leads to the proof of the existence of a strictly positive periodic solution by a theorem of Krasnoselskii....