Boundary value problems for differential equations with reflection of the argument.
This paper is concerned with the existence of solutions for some class of functional integrodifferential equations via Leray-Schauder Alternative. These equations arised in the study of second order boundary value problems for functional differential equations with nonlinear boundary conditions.
Algorithms for finding an approximate solution of boundary value problems for systems of functional ordinary differential equations are studied. Sufficient conditions for consistency and convergence of these methods are given. In the last section, a construction of methods of arbitrary order is presented.
The paper is concerned with oscillation properties of -th order neutral differential equations of the form where is a real number with , , , with and . Sufficient conditions are established for the existence of positive solutions and for oscillation of bounded solutions of the above equation. Combination of these conditions provides necessary and sufficient conditions for oscillation of bounded solutions of the equation. Furthermore, the results are generalized to equations in which...
In this paper, we establish some new sufficient conditions which guarantee the stability and boundedness of solutions of certain nonlinear and non autonomous differential equations of third order with delay. By defining appropriate Lyapunov function, we obtain some new results on the subject. By this work, we extend and improve some stability and boundedness results in the literature.
We consider certain class of second order nonlinear nonautonomous delay differential equations of the form and where , , , , , and are real valued functions which depend at most on the arguments displayed explicitly and is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski functional to establish our results. This work...