Displaying 1481 – 1500 of 1832

Showing per page

Remarks on existence of positive solutions of some integral equations

Jan Ligęza (2005)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We study the existence of positive solutions of the integral equation x ( t ) = μ 0 1 k ( t , s ) f ( s , x ( s ) , x ' ( s ) , ... , x ( n - 1 ) ( s ) ) d s , n 2 in both C n - 1 [ 0 , 1 ] and W n - 1 , p [ 0 , 1 ] spaces, where p 1 and μ > 0 . Throughout this paper k is nonnegative but the nonlinearity f may take negative values. The Krasnosielski fixed point theorem on cone is used.

Resolvent of nonautonomous linear delay functional differential equations

Joël Blot, Mamadou I. Koné (2015)

Nonautonomous Dynamical Systems

The aim of this paper is to give a complete proof of the formula for the resolvent of a nonautonomous linear delay functional differential equations given in the book of Hale and Verduyn Lunel [9] under the assumption alone of the continuity of the right-hand side with respect to the time,when the notion of solution is a differentiable function at each point, which satisfies the equation at each point, and when the initial value is a continuous function.

Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals

A. Sikorska-Nowak (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We prove an existence theorem for the equation x' = f(t,xₜ), x(Θ) = φ(Θ), where xₜ(Θ) = x(t+Θ), for -r ≤ Θ < 0, t ∈ Iₐ, Iₐ = [0,a], a ∈ R₊ in a Banach space, using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function f satisfies some conditions expressed in terms of the measure of weak noncompactness.

Second order evolution equations with parameter

Jan Bochenek, Teresa Winiarska (1994)

Annales Polonici Mathematici

We give some theorems on continuity and differentiability with respect to (h,t) of the solution of a second order evolution problem with parameter h Ω m . Our main tool is the theory of strongly continuous cosine families of linear operators in Banach spaces.

Currently displaying 1481 – 1500 of 1832