Displaying 21 – 40 of 72

Showing per page

A priori estimates and solvability of a non-resonant generalized multi-point boundary value problem of mixed Dirichlet-Neumann-Dirichlet type involving a p -Laplacian type operator

Chaitan P. Gupta (2007)

Applications of Mathematics

This paper is devoted to the problem of existence of a solution for a non-resonant, non-linear generalized multi-point boundary value problem on the interval [ 0 , 1 ] . The existence of a solution is obtained using topological degree and some a priori estimates for functions satisfying the boundary conditions specified in the problem.

A proof of monotony of the Temple quotients in eigenvalue problems

Karel Rektorys (1984)

Aplikace matematiky

If the so-called Collatz method is applied to get twosided estimates of the first eigenvalue λ 1 , the sequences of the so-called Schwarz quatients (which are upper bounds for λ 1 ) and of the so-called Temple quotients (which are lower bounds) are constructed. While monotony of the first sequence was proved many years ago, monotony of the second one has been proved only recently by F. goerisch and J. Albrecht in their common paper “Die Monotonie der Templeschen Quotienten” (ZAMM, in print). In the present...

A Sturm-Liouville problem with spectral and large parameters in boundary conditions and the associated Cauchy problem

Jamel Ben Amara (2011)

Colloquium Mathematicae

We study a Sturm-Liouville problem containing a spectral parameter in the boundary conditions. We associate to this problem a self-adjoint operator in a Pontryagin space Π₁. Using this operator-theoretic formulation and analytic methods, we study the asymptotic behavior of the eigenvalues under the variation of a large physical parameter in the boundary conditions. The spectral analysis is applied to investigate the well-posedness and stability of the wave equation of a string.

Currently displaying 21 – 40 of 72