Correction of Finite Element Estimates for Sturm-Liouville Eigenvalues.
In this article, we consider the operator defined by the differential expression in , where is a complex valued function. Discussing the spectrum, we prove that has a finite number of eigenvalues and spectral singularities, if the condition holds. Later we investigate the properties of the principal functions corresponding to the eigenvalues and the spectral singularities.
For any complex valued L p-function b(x), 2 ≤ p < ∞, or L ∞-function with the norm ‖b↾L ∞‖ < 1, the spectrum of a perturbed harmonic oscillator operator L = −d 2/dx 2 + x 2 + b(x) in L 2(ℝ1) is discrete and eventually simple. Its SEAF (system of eigen- and associated functions) is an unconditional basis in L 2(ℝ).