Unique continuation for |Δu| ≤ V |∇u| and related problems.
Much of this paper will be concerned with the proof of the followingTheorem 1. Suppose d ≥ 3, r = max {d, (3d - 4)/2}. If V ∈ Llocr(Rd), then the differential inequality |Δu| ≤ V |∇u| has the strong unique continuation property in the following sense: If u belongs to the Sobolev space Wloc2,p and if |Δu| ≤ V |∇u| andlimR→0 R-N ∫|x| < R |∇u|p' = 0for all N then u is constant.