Global existence for non-linear partial differential equations of the first order
A. Adamus-Kulczycka (1973)
Annales Polonici Mathematici
Jianwei Yang (2011)
Applicationes Mathematicae
We study the initial-boundary problem for a nonlinear system of wave equations with Hamilton structure under Dirichlet's condition. We use the local-in-time Strichartz estimates from [Burq et al., J. Amer. Math. Soc. 21 (2008), 831-845], Morawetz-Pohožaev's identity derived in [Miao and Zhu, Nonlinear Anal. 67 (2007), 3136-3151], and an a priori estimate of the solutions restricted to the boundary to show the existence of global and unique solutions.
Albert J. Milani (1990)
Czechoslovak Mathematical Journal
Albert J. Milani (1988)
Mathematische Zeitschrift
Herbert Amann (1985)
Journal für die reine und angewandte Mathematik
Colli, P., Gilardi, G., Grasselli, M., Schimperna, G. (2001)
Portugaliae Mathematica. Nova Série
Philippe Laurençot, Stéphane Mischler (2002)
Revista Matemática Iberoamericana
V. Barbu, G. Da Prato (1981)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Piotr Kacprzyk (2009)
Applicationes Mathematicae
Global existence of regular solutions to the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe with large inflow and outflow is shown. To prove the long time existence we need smallness of derivatives, with respect to the variable along the axis of the cylinder, of the external force and of the initial velocity in L₂-norms. Moreover, we need smallness of derivatives of inflow and outflow with respect to tangent directions to the boundary and with...
Otto Liess (1989)
Journées équations aux dérivées partielles
C. Bardos, P. Degond (1985)
Annales de l'I.H.P. Analyse non linéaire
Casella, E., Secchi, P., Trebeschi, P. (2002)
Portugaliae Mathematica. Nova Série
Wojciech M. Zajączkowski (2004)
Colloquium Mathematicae
Global existence of axially symmetric solutions to the Navier-Stokes equations in a cylinder with the axis of symmetry removed is proved. The solutions satisfy the ideal slip conditions on the boundary. We underline that there is no restriction on the angular component of velocity. We obtain two kinds of existence results. First, under assumptions necessary for the existence of weak solutions, we prove that the velocity belongs to , so it satisfies the Serrin condition. Next, increasing regularity...
Bachelot, Alain (1989)
Portugaliae mathematica
Vladimir Georgiev, Pedro P. Schirmer (1995)
Mathematische Zeitschrift
Tohru Ozawa, Jian Zhai (2008)
Annales de l'I.H.P. Analyse non linéaire
Nakao Hayashi (1994)
Mathematische Zeitschrift
Nakao Hayashi (1993)
Manuscripta mathematica
Hyejong O, Hakho Hong, Jongsung Kim (2023)
Applications of Mathematics
This paper is concerned with the 3-D Cauchy problem for the compressible viscous fluid flow taking into account the radiation effect. For more general gases including ideal polytropic gas, we prove that there exists a unique smooth solutions in , provided that the initial perturbations are small. Moreover, the time decay rates of the global solutions are obtained for higher-order spatial derivatives of density, velocity, temperature, and the radiative heat flux.
Pierre Degond (1986)
Annales scientifiques de l'École Normale Supérieure