Linear elliptic boundary value problems and weighted Sobolev spaces: a modified approach
We prove an existence and uniqueness theorem for the Dirichlet problem for the equation in an open cube , when belongs to some , with close to 2. Here we assume that the coefficient belongs to the space BMO() of functions of bounded mean oscillation and verifies the condition for a.e. .
The paper analyzes the issue of existence of solutions to linear problems in two dimensional exterior domains, linearizations of the Navier-Stokes equations. The systems are studied with a slip boundary condition. The main results prove the existence of distributional solutions for arbitrary data.
We study one-dimensional linear hyperbolic systems with -coefficients subjected to periodic conditions in time and reflection boundary conditions in space. We derive a priori estimates and give an operator representation of solutions in the whole scale of Sobolev-type spaces of periodic functions. These spaces give an optimal regularity trade-off for our problem.
This paper is divided into two parts and focuses on the linear independence of boundary traces of eigenfunctions of boundary value problems. Part I deals with second-order elliptic operators, and Part II with Stokes (and Oseen) operators. Part I: Let be an eigenvalue of a second-order elliptic operator defined on an open, sufficiently smooth, bounded domain Ω in ℝⁿ, with Neumann homogeneous boundary conditions on Γ = tial Ω. Let be the corresponding linearly independent (normalized) eigenfunctions...
Desarrollamos una teoría general para la resolución de ecuaciones lineales de evolución de la forma ü + Au = μ sobre R+, donde -A es el generador infinitesimal de un semigrupo analítico fuertemente continuo y μ es una medida de Radón con valores en un espacio de Banach. Utilizamos la teoría de interpolación-extrapolación de espacios y el teorema de representación de Riesz para tales medidas.Los resultados abstractos son ilustrados mediante aplicaciones a problemas de valor inicial parabólicos de...
We discuss some implications of linear programming for Mather theory [13, 14, 15] and its finite dimensional approximations. We find that the complementary slackness condition of duality theory formally implies that the Mather set lies in an -dimensional graph and as well predicts the relevant nonlinear PDE for the “weak KAM” theory of Fathi [6, 7, 8, 5].
We discuss some implications of linear programming for Mather theory [13-15] and its finite dimensional approximations. We find that the complementary slackness condition of duality theory formally implies that the Mather set lies in an n-dimensional graph and as well predicts the relevant nonlinear PDE for the “weak KAM” theory of Fathi [5-8].
The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part of the boundary is studied in this paper. The problem is discretized in space by the finite element method with linear functions on triangular elements and in time by the implicit-explicit method (the left-hand side by the implicit Euler method and the right-hand...
Theoretical framework for linear stability of an anomalous sub-diffusive activator-inhibitor system is set. Generalized Turing instability conditions are found to depend on anomaly exponents of various species. In addition to monotonous instability, known from normal diffusion, in an anomalous system oscillatory modes emerge. For equal anomaly exponents for both species the type of unstable modes is determined by the ratio of the reactants' diffusion coefficients. When the ratio exceeds its normal...