List of communications presented in sections
Error estimates in L∞(0,T;L2(Ω)), L∞(0,T;L2(Ω)2), L∞(0,T;L∞(Ω)), L∞(0,T;L∞(Ω)2), Ω in , are derived for a mixed finite element method for the initial-boundary value problem for integro-differential equation based on the Raviart-Thomas space Vh x Wh ⊂ H(div;Ω) x L2(Ω). Optimal order estimates are obtained for the approximation of u,ut in L∞(0,T;L2(Ω)) and the associated velocity p in L∞(0,T;L2(Ω)2), divp in L∞(0,T;L2(Ω)). Quasi-optimal order estimates are obtained for the approximation...
Using variational methods, we investigate the solutions of a class of fractional Schrödinger equations with perturbation. The existence criteria of infinitely many solutions are established by symmetric mountain pass theorem, which extend the results in the related study. An example is also given to illustrate our results.
For optimal control problems with ordinary differential equations where the -norm of the control is minimized, often bang-bang principles hold. For systems that are governed by a hyperbolic partial differential equation, the situation is different: even if a weak form of the bang-bang principle still holds for the wave equation, it implies no restriction on the form of the optimal control. To illustrate that for the Dirichlet boundary control of the wave equation in general not even feasible...
We study the local attractivity of mild solutions of equations in the form u’(t) = A(t)u(t) + f (t, u(t)), where A(t) are (possible) unbounded linear operators in a Banach space and where f is a (possible) nonlinear mapping. Under conditions of exponential stability of the linear part, we establish the local attractivity of various kinds of mild solutions. To obtain these results we provide several results on the Nemytskii operators on the space of the functions which converge to zero at infinity...