Fast wave propagation by model order reduction.
We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...
We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...
One proves that the steady-state solutions to Navier–Stokes equations with internal controllers are locally exponentially stabilizable by linear feedback controllers provided by a control problem associated with the linearized equation.
One proves that the steady-state solutions to Navier–Stokes equations with internal controllers are locally exponentially stabilizable by linear feedback controllers provided by a LQ control problem associated with the linearized equation.
We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition. In order to determine a feedback law satisfying such a compatibility condition, we consider an extended...
We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition. In order to determine a feedback law satisfying such a compatibility condition, we consider an extended...
In this article we give a complete proof in one dimension of an a priori inequality involving pseudo-differential operators: if and are symbols in such that , then for all we have the estimate for all in the Schwartz space, where is the usual norm. We use microlocalization of levels I, II and III in the spirit of Fefferman’s SAK principle.
Several properties of balayage of measures in harmonic spaces are studied. In particular, characterisations of thinness of subsets are given. For the heat equation the following result is obtained: suppose that is given the presheaf of solutions ofand is a subset of satisfyingfor arbitrarily small. Then is thin at 0 if and only if is polar. Similar result for the Laplace equation. At last the reduced of measures is defined and several approximation theorems on reducing and balayage...
This paper is devoted to the functional analytic approach to the problem of construction of Feller semigroups with Wentzell boundary conditions in the characteristic case. Our results may be stated as follows: We can construct Feller semigroups corresponding to a diffusion phenomenon including absorption, reflection, viscosity, diffusion along the boundary and jump at each point of the boundary.
For correlations of the form (0.2) we consider a critical case and prove power decay upper bounds in terms of the fundamental solution of a certain elliptic operator. This is achieved by improving the use of a maximum principle. We also formulate a general maximum principle and give two applications.