Displaying 21 – 40 of 372

Showing per page

Feedback stabilization of a boundary layer equation

Jean-Marie Buchot, Jean-Pierre Raymond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...

Feedback stabilization of a boundary layer equation

Jean-Marie Buchot, Jean-Pierre Raymond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...

Feedback stabilization of Navier–Stokes equations

Viorel Barbu (2003)

ESAIM: Control, Optimisation and Calculus of Variations

One proves that the steady-state solutions to Navier–Stokes equations with internal controllers are locally exponentially stabilizable by linear feedback controllers provided by a L Q control problem associated with the linearized equation.

Feedback stabilization of Navier–Stokes equations

Viorel Barbu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

One proves that the steady-state solutions to Navier–Stokes equations with internal controllers are locally exponentially stabilizable by linear feedback controllers provided by a LQ control problem associated with the linearized equation.

Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system

Mehdi Badra (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition. In order to determine a feedback law satisfying such a compatibility condition, we consider an extended...

Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system

Mehdi Badra (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition. In order to determine a feedback law satisfying such a compatibility condition, we consider an extended...

Fefferman's SAK principle in one dimension

Frédéric Hérau (2000)

Annales de l'institut Fourier

In this article we give a complete proof in one dimension of an a priori inequality involving pseudo-differential operators: if a and b are symbols in S 1 , 0 2 such that | a | b , then for all ϵ > 0 we have the estimate a w u s 2 C ϵ ( b w u s 2 + u s + ϵ 2 ) for all u in the Schwartz space, where t is the usual H t norm. We use microlocalization of levels I, II and III in the spirit of Fefferman’s SAK principle.

Fegen und Dünnheit mit Anwendungen auf die Laplace-und Wärmeleitungsgleichung

Wolfhard Hansen (1971)

Annales de l'institut Fourier

Several properties of balayage of measures in harmonic spaces are studied. In particular, characterisations of thinness of subsets are given. For the heat equation the following result is obtained: suppose that E = R m + 1 is given the presheaf of solutions of i = 1 m u x i = u x m + 1 and B is a subset of R m × [ - , 0 ] satisfying { ( α x , α 2 t ) : ( x , t ) B , x R m , t R } B for α > 0 arbitrarily small. Then B is thin at 0 if and only if B is polar. Similar result for the Laplace equation. At last the reduced of measures is defined and several approximation theorems on reducing and balayage...

Feller semigroups and degenerate elliptic operators with Wentzell boundary conditions

Kazuaki Taira, Angelo Favini, Silvia Romanelli (2001)

Studia Mathematica

This paper is devoted to the functional analytic approach to the problem of construction of Feller semigroups with Wentzell boundary conditions in the characteristic case. Our results may be stated as follows: We can construct Feller semigroups corresponding to a diffusion phenomenon including absorption, reflection, viscosity, diffusion along the boundary and jump at each point of the boundary.

Ferromagnetic integrals, correlations and maximum principles

Johannes Sjöstrand (1994)

Annales de l'institut Fourier

For correlations of the form (0.2) we consider a critical case and prove power decay upper bounds in terms of the fundamental solution of a certain elliptic operator. This is achieved by improving the use of a maximum principle. We also formulate a general maximum principle and give two applications.

Currently displaying 21 – 40 of 372