Displaying 421 – 440 of 1309

Showing per page

Essential self-adjointness of symmetric linear relations associated to first order systems

Matthias Lesch (2000)

Journées équations aux dérivées partielles

The purpose of this note is to present several criteria for essential self-adjointness. The method is based on ideas due to Shubin. This note is divided into two parts. The first part deals with symmetric first order systems on the line in the most general setting. Such a symmetric first order system of differential equations gives rise naturally to a symmetric linear relation in a Hilbert space. In this case even regularity is nontrivial. We will announce a regularity result and discuss criteria...

Estimate of the Hausdorff measure of the singular set of a solution for a semi-linear elliptic equation associated with superconductivity

Junichi Aramaki (2010)

Archivum Mathematicum

We study the boundedness of the Hausdorff measure of the singular set of any solution for a semi-linear elliptic equation in general dimensional Euclidean space n . In our previous paper, we have clarified the structures of the nodal set and singular set of a solution for the semi-linear elliptic equation. In particular, we showed that the singular set is ( n - 2 ) -rectifiable. In this paper, we shall show that under some additive smoothness assumptions, the ( n - 2 ) -dimensional Hausdorff measure of singular set...

Estimate of the pressure when its gradient is the divergence of a measure. Applications

Marc Briane, Juan Casado-Díaz (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, a W - 1 , N ' estimate of the pressure is derived when its gradient is the divergence of a matrix-valued measure on N , or on a regular bounded open set of  N . The proof is based partially on the Strauss inequality [Strauss,Partial Differential Equations: Proc. Symp. Pure Math. 23 (1973) 207–214] in dimension two, and on a recent result of Bourgain and Brezis [J. Eur. Math. Soc. 9 (2007) 277–315] in higher dimension. The estimate is used to derive a representation result for divergence free distributions...

Estimate of the pressure when its gradient is the divergence of a measure. Applications

Marc Briane, Juan Casado-Díaz (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, a W - 1 , N ' estimate of the pressure is derived when its gradient is the divergence of a matrix-valued measure on N , or on a regular bounded open set of  N . The proof is based partially on the Strauss inequality [Strauss, Partial Differential Equations: Proc. Symp. Pure Math.23 (1973) 207–214] in dimension two, and on a recent result of Bourgain and Brezis [J. Eur. Math. Soc.9 (2007) 277–315] in higher dimension. The estimate is used to derive a representation result for divergence free distributions...

Estimates and computations for melting and solidification problems

James M. Greenberg (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we focus on melting and solidification processes described by phase-field models and obtain rigorous estimates for such processes. These estimates are derived in Section 2 and guarantee the convergence of solutions to non-constant equilibrium patterns. The most basic results conclude with the inequality (E2.31). The estimates in the remainder of Section 2 illustrate what obtains if the initial data is progressively more regular and may be omitted on first reading. We also present some...

Estimates and Computations for Melting and Solidification Problems

James M. Greenberg (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we focus on melting and solidification processes described by phase-field models and obtain rigorous estimates for such processes. These estimates are derived in Section 2 and guarantee the convergence of solutions to non-constant equilibrium patterns. The most basic results conclude with the inequality (E2.31). The estimates in the remainder of Section 2 illustrate what obtains if the initial data is progressively more regular and may be omitted on first reading. We also present...

Estimates based on scale separation for geophysical flows.

François Jauberteau, Roger Temam (2002)

RACSAM

The objective of this work is to obtain theoretical estimates on the large and small scales for geophysical flows. Firstly, we consider the shallow water problem in the one-dimensional case, then in the two-dimensional case. Finally we consider geophysical flows under the hydrostatic hypothesis and the Boussinesq approximation. Scale separation is based on Fourier series, with N models in each spatial direction, and the choice of a cut-off level N1 < N to define large and small scales. We...

Estimates for Principal Lyapunov Exponents: A Survey

Janusz Mierczyński (2014)

Nonautonomous Dynamical Systems

This is a survey of known results on estimating the principal Lyapunov exponent of a timedependent linear differential equation possessing some monotonicity properties. Equations considered are mainly strongly cooperative systems of ordinary differential equations and parabolic partial differential equations of second order. The estimates are given either in terms of the principal (dominant) eigenvalue of some derived time-independent equation or in terms of the parameters of the equation itself....

Currently displaying 421 – 440 of 1309