Lp regularity of the Dirichlet problem for elliptic equations with singular drift.
Let £ denote the sub-Laplacian on the Heisenberg group Hm. We prove that ei√£ / (1 - £)α/2 extends to a bounded operator on Lp(Hm), for 1 ≤ p ≤ ∞, when α > (d - 1) |1/p - 1/2|.
We give a sufficient condition for the existence of a Lyapunov function for the system aₜ = ∇(k(a,c)∇a - h(a,c)∇c), x ∈ Ω, t > 0, , x ∈ Ω, t > 0, for , completed with either a = c = 0, or ∂a/∂n = ∂c/∂n = 0, or k(a,c) ∂a/∂n = h(a,c) ∂c/∂n, c = 0 on ∂Ω × t > 0. Furthermore we study the asymptotic behaviour of the solution and give some uniform -estimates.
In this paper we investigate additional regularity properties for global and trajectory attractors of all globally defined weak solutions of semi-linear parabolic differential reaction-diffusion equations with discontinuous nonlinearities, when initial data uτ ∈ L2(Ω). The main contributions in this paper are: (i) sufficient conditions for the existence of a Lyapunov function for all weak solutions of autonomous differential reaction-diffusion equations with discontinuous and multivalued interaction...