Exact controllability for the wave equation in domains with variable boundary.
A model representing the vibrations of a fluid-solid coupled structure is considered. Following Hilbert Uniqueness Method (HUM) introduced by Lions, we establish exact controllability results for this model with an internal control in the fluid part and there is no control in the solid part. Novel features which arise because of the coupling are pointed out. It is a source of difficulty in the proof of observability inequalities, definition of weak solutions and the proof of controllability...
A model representing the vibrations of a fluid-solid coupled structure is considered. Following Hilbert Uniqueness Method (HUM) introduced by Lions, we establish exact controllability results for this model with an internal control in the fluid part and there is no control in the solid part. Novel features which arise because of the coupling are pointed out. It is a source of difficulty in the proof of observability inequalities, definition of weak solutions and the proof of controllability results....
We set a coupled boundary value problem between two domains of different dimension. The first one is the unit cube of Rn, n C [2,3], with a crack and the second one is the crack. this problem comes from Ciarlet et al. (1989), that obtained an analogous coupled problem. We show that the solution has singularities due to the crack. As in Grisvard (1989), we adapt the Hilbert uniqueness method of J.-L. Lions (1968,1988) in order to obtain the exact controllability of the associated wave equation with...
We consider the linear wave equation with Dirichlet boundary conditions in a bounded interval, and with a control acting on a moving point. We give sufficient conditions on the trajectory of the control in order to have the exact controllability property.
The paper studies the problem of exact controllability of the Euler- Bernoulli equation in a cylinder of , via boundary controls acting on its lateral surface.
The exact internal controllability of the radial solutions of a semilinear heat equation in R3 is proved. The result applies for nonlinearities that are of an order smaller than |s| logp |s| at infinity for 1 ≤ p < 2. The method of the proof combines HUM and a fixed point technique.
In this paper we study the boundary exact controllability for the equation when the control action is of Dirichlet-Neumann form and is a bounded domain in . The result is obtained by applying the HUM (Hilbert Uniqueness Method) due to J. L. Lions.
This paper is concerned with the global exact controllability of the semilinear heat equation (with nonlinear terms involving the state and the gradient) completed with boundary conditions of the form . We consider distributed controls, with support in a small set. The null controllability of similar linear systems has been analyzed in a previous first part of this work. In this second part we show that, when the nonlinear terms are locally Lipschitz-continuous and slightly superlinear, one...
The results of this paper concern exact controllability to the trajectories for a coupled system of semilinear heat equations. We have transmission conditions on the interface and Dirichlet boundary conditions at the external part of the boundary so that the system can be viewed as a single equation with discontinuous coefficients in the principal part. Exact controllability to the trajectories is proved when we consider distributed controls supported in the part of the domain where the diffusion...
The results of this paper concern exact controllability to the trajectories for a coupled system of semilinear heat equations. We have transmission conditions on the interface and Dirichlet boundary conditions at the external part of the boundary so that the system can be viewed as a single equation with discontinuous coefficients in the principal part. Exact controllability to the trajectories is proved when we consider distributed controls supported in the part of the domain where the diffusion...