On nonhomogeneous biharmonic equations involving critical Sobolev exponent.
Studiamo un problema ellittico quasilineare concernente un dominio circondato da un rinforzo sottile di spessore variabile, in cui il coefficiente dell'equazione è (localmente) non costante. Esso concerne due diversi esponenti, uno nel dominio e l'altro nel rinforzo, una condizione di Dirichlelet sulla frontiera esterna e una condizione di trasmissione. Prediciamo il comportamento asintotico della soluzione quando lo spessore, insieme con il coefficiente nel rinforzo, tende a zero perché essi siano...
We consider the flow of a non-homogeneous viscous incompressible fluid which is known at an initial time. Our purpose is to prove that, when is smooth enough, there exists a local strong regular solution (which is global for small regular data).
We consider a nonlinear evolution inclusion driven by an m-accretive operator which generates an equicontinuous nonlinear semigroup of contractions. We establish the existence of extremal integral solutions and we show that they form a dense, -subset of the solution set of the original Cauchy problem. As an application, we obtain “bang-bang”’ type theorems for two nonlinear parabolic distributed parameter control systems.
Qualitative comparison of the nonoscillatory behavior of the equations and is sought by way of finding different nonoscillation criteria for the above equations. is a disconjugate operator of the form Both canonical and noncanonical forms of have been studied.
We develop the -approach to inverse scattering at zero energy in dimensions of [Beals, Coifman 1985], [Henkin, Novikov 1987] and [Novikov 2002]. As a result we give, in particular, uniqueness theorem, precise reconstruction procedure, stability estimate and approximate reconstruction for the problem of finding a sufficiently small potential in the Schrödinger equation from a fixed non-overdetermined (“backscattering” type) restriction of the Faddeev generalized scattering amplitude in the...