Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem
In this paper, a class of cell centered finite volume schemes, on general unstructured meshes, for a linear convection-diffusion problem, is studied. The convection and the diffusion are respectively approximated by means of an upwind scheme and the so called diamond cell method [4]. Our main result is an error estimate of order h, assuming only the W2,p (for p>2) regularity of the continuous solution, on a mesh of quadrangles. The proof is based on an extension of the ideas developed in...
We study a finite volume method, used to approximate the solution of the linear two dimensional convection diffusion equation, with mixed Dirichlet and Neumann boundary conditions, on Cartesian meshes refined by an automatic technique (which leads to meshes with hanging nodes). We propose an analysis through a discrete variational approach, in a discrete H1 finite volume space. We actually prove the convergence of the scheme in a discrete H1 norm, with an error estimate of order O(h) (on meshes...
Iterative approximation algorithms are successfully applied in parametric approximation tasks. In particular, reduced basis methods make use of the so-called Greedy algorithm for approximating solution sets of parametrized partial differential equations. Recently, a priori convergence rate statements for this algorithm have been given (Buffa et al. 2009, Binev et al. 2010). The goal of the current study is the extension to time-dependent problems, which are typically approximated using the POD–Greedy...
We consider the Cauchy problem in an unbounded region for equations of the type either or . We prove convergence of their difference analogues by means of recurrence inequalities in some wide classes of unbounded functions.
The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always correctly...
The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always...
We study convergence of solutions to stationary states in an astrophysical model of evolution of clouds of self-gravitating particles.
We study the behaviour of the solutions of the Cauchy problem and prove that if initial data decay fast enough at infinity then the solution of the Cauchy problem approaches the travelling wave solution spreading either to the right or to the left, or two travelling waves moving in opposite directions. Certain generalizations are also mentioned.
This work proves the convergence in L¹(ℝ²) towards an Oseen vortex-like solution to the dissipative quasi-geostrophic equations for several sets of initial data with suitable decay at infinity. The relative entropy method applies in a direct way for solving this question in the case of signed initial data and the difficulty lies in showing the existence of unique global solutions for the class of initial data for which all properties needed in the entropy approach are met. However, the estimates...
In this paper, two algorithms are proposed to solve systems of algebraic equations generated by a discretization procedure of the weak formulation of boundary value problems for systems of nonlinear elliptic equations. The first algorithm, Newton-CG-MG, is suitable for systems with gradient mappings, while the second, Newton-CE-MG, can be applied to more general systems. Convergence theorems are proved and application to the semiconductor device modelling is described.
We propose and analyse two convergent fully discrete schemes to solve the incompressible Navier-Stokes-Nernst-Planck-Poisson system. The first scheme converges to weak solutions satisfying an energy and an entropy dissipation law. The second scheme uses Chorin's projection method to obtain an efficient approximation that converges to strong solutions at optimal rates.