Displaying 741 – 760 of 876

Showing per page

Convergent semidiscretization of a nonlinear fourth order parabolic system

Ansgar Jüngel, René Pinnau (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.

Convergent semidiscretization of a nonlinear fourth order parabolic system

Ansgar Jüngel, René Pinnau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.

Convergenza per l'equazione degli integrali primi associata al problema del rimbalzo

Michele Carriero, Antonio Leaci, Eduardo Pascali (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we present a few results on convergence for the prime integrals equations connected with the bounce problem. This approach allows both to prove uniqueness for the one-dimensional bounce problem for almost all permissible Cauchy data (see also [6]) and to deepen previous results (see [3], [5], [7]).

Converging self-consistent field equations in quantum chemistry – recent achievements and remaining challenges

Konstantin N. Kudin, Gustavo E. Scuseria (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper reviews popular acceleration techniques to converge the non-linear self-consistent field equations appearing in quantum chemistry calculations with localized basis sets. The different methodologies, as well as their advantages and limitations are discussed within the same framework. Several illustrative examples of calculations are presented. This paper attempts to describe recent achievements and remaining challenges in this field.

Converse problem for the two-component radial Gross-Pitaevskii system with a large coupling parameter

Casteras, Jean-Baptiste, Sourdis, Christos (2017)

Proceedings of Equadiff 14

We consider strongly coupled competitive elliptic systems that arise in the study of two-component Bose-Einstein condensates. As the coupling parameter tends to infinity, solutions that remain uniformly bounded are known to converge to a segregated limiting profile, with the difference of its components satisfying a limit scalar PDE. In the case of radial symmetry, under natural non-degeneracy assumptions on a solution of the limit problem, we establish by a perturbation argument its persistence...

Convex domains and unique continuation at the boundary.

Vilhelm Adolfsson, Luis Escauriaza, Carlos Kenig (1995)

Revista Matemática Iberoamericana

We show that a harmonic function which vanishes continuously on an open set of the boundary of a convex domain cannot have a normal derivative which vanishes on a subset of positive surface measure. We also prove a similar result for caloric functions vanishing on the lateral boundary of a convex cylinder.

Convex integration of non-linear systems of partial differential equations

David Spring (1983)

Annales de l'institut Fourier

Geometrical techniques are employed to prove a global existence theorem for C r -solutions to underdetermined systems of non-linear r t h order partial differential equations, r { 1 , 2 , 3 , ... } , which satisfy certain convexity conditions. The solutions are not unique, but satisfy given approximations on lower order derivatives. The main result, which includes the relative case generalizes the work of M. Gromov on non-linear first order systems.

Convex integration with constraints and applications to phase transitions and partial differential equations

Stefan Müller, Vladimír Šverák (1999)

Journal of the European Mathematical Society

We study solutions of first order partial differential relations D u K , where u : Ω n m is a Lipschitz map and K is a bounded set in m × n matrices, and extend Gromov’s theory of convex integration in two ways. First, we allow for additional constraints on the minors of D u and second we replace Gromov’s P −convex hull by the (functional) rank-one convex hull. The latter can be much larger than the former and this has important consequences for the existence of ‘wild’ solutions to elliptic systems. Our work was originally...

Convex shape optimization for the least biharmonic Steklov eigenvalue

Pedro Ricardo Simão Antunes, Filippo Gazzola (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The least Steklov eigenvalue d1 for the biharmonic operator in bounded domains gives a bound for the positivity preserving property for the hinged plate problem, appears as a norm of a suitable trace operator, and gives the optimal constant to estimate the L2-norm of harmonic functions. These applications suggest to address the problem of minimizing d1 in suitable classes of domains. We survey the existing results and conjectures about this topic; in particular, the existence of a convex domain...

Convexity and uniqueness in a free boundary problem arising in combustion theory.

Arshak Petrosyan (2001)

Revista Matemática Iberoamericana

We consider solutions to a free boundary problem for the heat equation, describing the propagation of flames. Suppose there is a bounded domain Ω ⊂ QT = Rn x (0,T) for some T > 0 and a function u > 0 in Ω such thatut = Δu,    in Ω,u = 0 and |∇u| = 1,   on Γ := ∂Ω ∩ QT,u(·,0) = u0,     on Ω0,where Ω0 is a given domain in Rn and u0 is a positive and continuous function in Ω0, vanishing on ∂Ω0. If Ω0 is convex and u0 is concave in Ω0, then we show that (u,Ω) is unique and the time sections...

Convexity estimates for flows by powers of the mean curvature

Felix Schulze (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We study the evolution of a closed, convex hypersurface in n + 1 in direction of its normal vector, where the speed equals a power k 1 of the mean curvature. We show that if initially the ratio of the biggest and smallest principal curvatures at every point is close enough to 1 , depending only on k and n , then this is maintained under the flow. As a consequence we obtain that, when rescaling appropriately as the flow contracts to a point, the evolving surfaces converge to the unit sphere.

Convolution equations in the space of Laplace distributions

Maria E. Pliś (1998)

Annales Polonici Mathematici

A formal solution of a nonlinear equation P(D)u = g(u) in 2 variables is constructed using the Laplace transformation and a convolution equation. We assume some conditions on the characteristic set Char P.

Currently displaying 741 – 760 of 876