Convergence of numerical algorithms for semilinear hyperbolic system
We study convergence of formal power series along families of formal or analytic vector fields. One of our results says that if a formal power series converges along a family of vector fields, then it also converges along their commutators. Using this theorem and a result of T. Morimoto, we prove analyticity of formal solutions for a class of nonlinear singular PDEs. In the proofs we use results from control theory.
The convergence of Rothe’s method in Hölder spaces is discussed. The obtained results are based on uniform boundedness of Rothe’s approximate solutions in Hölder spaces recently achieved by the first author. The convergence and its rate are derived inside a parabolic cylinder assuming an additional compatibility conditions.
We consider the symmetric FEM-BEM coupling for the numerical solution of a (nonlinear) interface problem for the 2D Laplacian. We introduce some new a posteriori error estimators based on the (h − h/2)-error estimation strategy. In particular, these include the approximation error for the boundary data, which allows to work with discrete boundary integral operators only. Using the concept of estimator reduction, we prove that the proposed adaptive...
We consider the symmetric FEM-BEM coupling for the numerical solution of a (nonlinear) interface problem for the 2D Laplacian. We introduce some new a posteriori error estimators based on the (h − h/2)-error estimation strategy. In particular, these include the approximation error for the boundary data, which allows to work with discrete boundary integral operators only. Using the concept of estimator reduction, we prove that the proposed adaptive...
Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated...
We prove that the entropy solutions of the so-called relativistic heat equation converge to solutions of the heat equation as the speed of light c tends to ∞ for any initial condition u0 ≥ 0 in L1(RN) ∩ L∞(RN).
We consider a rotating fluid in a domain with rough horizontal boundaries. The Rossby number, kinematic viscosity and roughness are supposed of characteristic size . We prove a convergence theorem on solutions of Navier-Stokes Coriolis equations, as goes to zero, in the well prepared case. We show in particular that the limit system is a two-dimensional Euler equation with a nonlinear damping term due to boundary layers. We thus generalize the results obtained on flat boundaries with the classical...
In this paper, we prove the convergence of the current defined from the Schrödinger-Poisson system with the presence of a strong magnetic field toward a dissipative solution of the Euler equations.
In this paper, we prove the convergence of the current defined from the Schrödinger-Poisson system with the presence of a strong magnetic field toward a dissipative solution of the Euler equations.