Displaying 741 – 760 of 17469

Showing per page

A note on γ-radonifying and summing operators

Zdzisław Brzeźniak, Hongwei Long (2015)

Banach Center Publications

In this note, we discuss certain generalizations of γ-radonifying operators and their applications to the regularity for linear stochastic evolution equations on some special Banach spaces. Furthermore, we also consider a more general class of operators, namely the so-called summing operators and discuss the application to the compactness of the heat semi-group between weighted L p -spaces.

A null controllability data assimilation methodology applied to a large scale ocean circulation model

Galina C. García, Axel Osses, Jean Pierre Puel (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Data assimilation refers to any methodology that uses partial observational data and the dynamics of a system for estimating the model state or its parameters. We consider here a non classical approach to data assimilation based in null controllability introduced in [Puel, C. R. Math. Acad. Sci. Paris 335 (2002) 161–166] and [Puel, SIAM J. Control Optim. 48 (2009) 1089–1111] and we apply it to oceanography. More precisely, we are interested in developing this methodology to recover the unknown final...

A null controllability data assimilation methodology applied to a large scale ocean circulation model*

Galina C. García, Axel Osses, Jean Pierre Puel (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Data assimilation refers to any methodology that uses partial observational data and the dynamics of a system for estimating the model state or its parameters. We consider here a non classical approach to data assimilation based in null controllability introduced in [Puel, C. R. Math. Acad. Sci. Paris335 (2002) 161–166] and [Puel, SIAM J. Control Optim.48 (2009) 1089–1111] and we apply it to oceanography. More precisely, we are interested in developing this methodology to recover the unknown final...

A Numerical Approach of the sentinel method for distributed parameter systems

Aboubakari Traore, Benjamin Mampassi, Bisso Saley (2007)

Open Mathematics

In this paper we consider the problem of detecting pollution in some non linear parabolic systems using the sentinel method. For this purpose we develop and analyze a new approach to the discretization which pays careful attention to the stability of the solution. To illustrate convergence properties we give some numerical results that present good properties and show new ways for building discrete sentinels.

A numerical method for the solution of the nonlinear observer problem

Rehák, Branislav (2021)

Programs and Algorithms of Numerical Mathematics

The central part in the process of solving the observer problem for nonlinear systems is to find a solution of a partial differential equation of first order. The original method proposed to solve this equation used expansions into Taylor polynomials, however, it suffers from rather restrictive assumptions while the approach proposed here allows to generalize these requirements. Its characteristic feature is that it is based on the application of the Finite Element Method. An illustrating example...

A numerical minimization scheme for the complex Helmholtz equation

Russell B. Richins, David C. Dobson (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We use the work of Milton, Seppecher, and Bouchitté on variational principles for waves in lossy media to formulate a finite element method for solving the complex Helmholtz equation that is based entirely on minimization. In particular, this method results in a finite element matrix that is symmetric positive-definite and therefore simple iterative descent methods and preconditioning can be used to solve the resulting system of equations. We also derive an error bound for the method and illustrate...

A numerical minimization scheme for the complex Helmholtz equation

Russell B. Richins, David C. Dobson (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We use the work of Milton, Seppecher, and Bouchitté on variational principles for waves in lossy media to formulate a finite element method for solving the complex Helmholtz equation that is based entirely on minimization. In particular, this method results in a finite element matrix that is symmetric positive-definite and therefore simple iterative descent methods and preconditioning can be used to solve the resulting system of equations. We also derive an error bound for the method and illustrate...

Currently displaying 741 – 760 of 17469