Existence of two nontrivial solutions for semilinear elliptic problems.
We study the following singular elliptic equation with critical exponent ⎧ in Ω, ⎨u > 0 in Ω, ⎩u = 0 on ∂Ω, where (N≥3) is a smooth bounded domain, and λ > 0, γ ∈ (0,1) are real parameters. Under appropriate assumptions on Q, by the constrained minimizer and perturbation methods, we obtain two positive solutions for all λ > 0 small enough.
In this work we study a nonlocal reaction-diffusion equation arising in population dynamics. The integral term in the nonlinearity describes nonlocal stimulation of reproduction. We prove existence of travelling wave solutions by the Leray-Schauder method using topological degree for Fredholm and proper operators and special a priori estimates of solutions in weighted Hölder spaces.
This paper presents several sufficient conditions for the existence of weak solutions to general nonlinear elliptic problems of the type where is a bounded domain of , . In particular, we do not require strict monotonicity of the principal part , while the approach is based on the variational method and results of the variable exponent function spaces.
We prove the existence of weak solutions for steady flows of electrorheological fluids with homogeneous Navier-slip type boundary conditions provided . To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz truncation functions preserving the zero normal component in variable exponent Sobolev spaces.
We prove existence of weak solutions to doubly degenerate diffusion equations by Faedo-Galerkin approximation for general domains and general nonlinearities. More precisely, we discuss the equation in an abstract setting, which allows to choose function spaces corresponding to bounded or unbounded domains with Dirichlet or Neumann boundary conditions. The function can be an inhomogeneity or a nonlinearity involving terms of the form or . In the appendix, an introduction to weak differentiability...