Displaying 1461 – 1480 of 2166

Showing per page

On the motion of a body in thermal equilibrium immersed in a perfect gas

Kazuo Aoki, Guido Cavallaro, Carlo Marchioro, Mario Pulvirenti (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a body immersed in a perfect gas and moving under the action of a constant force. Body and gas are in thermal equilibrium. We assume a stochastic interaction body/medium: when a particle of the medium hits the body, it is absorbed and immediately re-emitted with a Maxwellian distribution. This system gives rise to a microscopic model of friction. We study the approach of the body velocity V(t) to the limiting velocity V and prove that, under suitable smallness assumptions, the approach...

On the motion of rigid bodies in a viscous fluid

Eduard Feireisl (2002)

Applications of Mathematics

We consider the problem of motion of several rigid bodies in a viscous fluid. Both compressible and incompressible fluids are studied. In both cases, the existence of globally defined weak solutions is established regardless possible collisions of two or more rigid objects.

On the necessity of gaps

Hiroshi Matano, Paul Rabinowitz (2006)

Journal of the European Mathematical Society

Recent papers have studied the existence of phase transition solutions for Allen–Cahn type equations. These solutions are either single or multi-transition spatial heteroclinics or homoclinics between simpler equilibrium states. A sufficient condition for the construction of the multitransition solutions is that there are gaps in the ordered set of single transition solutions. In this paper we explore the necessity of these gap conditions.

On the Neumann problem with combined nonlinearities

Jan Chabrowski, Jianfu Yang (2005)

Annales Polonici Mathematici

We establish the existence of multiple solutions of an asymptotically linear Neumann problem. These solutions are obtained via the mountain-pass principle and a local minimization.

On the Neumann problem with L¹ data

J. Chabrowski (2007)

Colloquium Mathematicae

We investigate the solvability of the linear Neumann problem (1.1) with L¹ data. The results are applied to obtain existence theorems for a semilinear Neumann problem.

Currently displaying 1461 – 1480 of 2166