Displaying 141 – 160 of 401

Showing per page

Blow-up and global existence of a weak solution for a sine-Gordon type quasilinear wave equation

João-Paulo Dias, Mário Figueira (2000)

Bollettino dell'Unione Matematica Italiana

Si considera il problema di Cauchy per l'equazione (cf. [1]): ϕ t t - ϕ x x - ϕ x 2 ϕ x x + sin ϕ = 0 x , t R × R + . Nella prima parte di questo articolo si dimostra, per dati iniziali particolari, un risultato di «blow-up» della soluzione classica locale (in tempo), seguendo le idee introdotte in [8], [2] ed [4]. Nella seconda parte, viene utilizzato il metodo di compattezza per compensazione (cf. [13], [10] ed [5]) ed una estensione del principio delle regioni invarianti (cf. [12]) per dimostrare l'esistenza di una soluzione debole globale entropica....

Blow-up behavior in nonlocal vs local heat equations

Philippe Souplet (2000)

Banach Center Publications

We present some recent results on the blow-up behavior of solutions of heat equations with nonlocal nonlinearities. These results concern blow-up sets, rates and profiles. We then compare them with the corresponding results in the local case, and we show that the two types of problems exhibit "dual" blow-up behaviors.

Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations

Shanshan Yang, Hongbiao Jiang, Yinhe Lin (2021)

Czechoslovak Mathematical Journal

We study compressible isentropic Navier-Stokes-Poisson equations in 3 . With some appropriate assumptions on the density, velocity and potential, we show that the classical solution of the Cauchy problem for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing will blow up in finite time. The proof is based on a contradiction argument, which relies on proving the conservation of total mass and total momentum.

Blow-up for a localized singular parabolic equation with weighted nonlocal nonlinear boundary conditions

Youpeng Chen, Baozhu Zheng (2015)

Annales Polonici Mathematici

This paper deals with the blow-up properties of positive solutions to a localized singular parabolic equation with weighted nonlocal nonlinear boundary conditions. Under certain conditions, criteria of global existence and finite time blow-up are established. Furthermore, when q=1, the global blow-up behavior and the uniform blow-up profile of the blow-up solution are described; we find that the blow-up set is the whole domain [0,a], including the boundary, in contrast to the case of parabolic equations...

Blow-up for solutions of hyperbolic PDE and spacetime singularities

Alan D. Rendall (2000)

Journées équations aux dérivées partielles

An important question in mathematical relativity theory is that of the nature of spacetime singularities. The equations of general relativity, the Einstein equations, are essentially hyperbolic in nature and the study of spacetime singularities is naturally related to blow-up phenomena for nonlinear hyperbolic systems. These connections are explained and recent progress in applying the theory of hyperbolic equations in this field is presented. A direction which has turned out to be fruitful is that...

Blow-up for the compressible isentropic Navier-Stokes-Poisson equations

Jianwei Dong, Junhui Zhu, Yanping Wang (2020)

Czechoslovak Mathematical Journal

We will show the blow-up of smooth solutions to the Cauchy problems for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing and compressible bipolar isentropic Navier-Stokes-Poisson equations in arbitrary dimensions under some restrictions on the initial data. The key of the proof is finding the relations between the physical quantities and establishing some differential inequalities.

Currently displaying 141 – 160 of 401