Application of the approximate analytic prolongment to the boundary problems of the partial differential equations
The goal of this paper is to present a different approach to the homogenization of the Dirichlet boundary value problem in porous medium. Unlike the standard energy method or the method of two-scale convergence, this approach is not based on the weak formulation of the problem but on the very weak formulation. To illustrate the method and its advantages we treat the stationary, incompressible Navier-Stokes system with the non-homogeneous Dirichlet boundary condition in periodic porous medium. The...
In this paper we study a class of abstract quasi-variational inequalities with nonlocal constraints depending on the unknown and establish an existence result. Further we give its applications to parabolic systems of partial differential inequalities with nonlocal obstacles depending on the unknowns.
We develop gradient schemes for the approximation of the Perona-Malik equations and nonlinear tensor-diffusion equations. We prove the convergence of these methods to the weak solutions of the corresponding nonlinear PDEs. A particular gradient scheme on rectangular meshes is then studied numerically with respect to experimental order of convergence which shows its second order accuracy. We present also numerical experiments related to image filtering by time-delayed Perona-Malik and tensor diffusion...
Today engineering and science researchers routinely confront problems in mathematical modeling involving solutions techniques for differential equations. Sometimes these solutions can be obtained analytically by numerous traditional ad hoc methods appropriate for integrating particular types of equations. More often, however, the solutions cannot be obtained by these methods, in spite of the fact that, e.g. over 400 types of integrable second-order ordinary differential equations were summarized...