Existence and localization results for -Laplacian via topological methods.
We use the genus theory to prove the existence and multiplicity of solutions for the fractional -Kirchhoff problem where is an open bounded smooth domain of , , with fixed, , is a numerical parameter, and are continuous functions.
In this paper we study the nonlinear Dirichlet problem involving p(x)-Laplacian (hemivariational inequality) with nonsmooth potential. By using nonsmooth critical point theory for locally Lipschitz functionals due to Chang [6] and the properties of variational Sobolev spaces, we establish conditions which ensure the existence of solution for our problem.
We consider the following Kirchhoff type problem involving a critical nonlinearity: ⎧ in Ω, ⎨ ⎩ u = 0 on ∂Ω, where (N ≥ 3) is a smooth bounded domain with smooth boundary ∂Ω, a > 0, b ≥ 0, and 0 < m < 2/(N-2). Under appropriate assumptions on f, we show the existence of a positive ground state solution via the variational method.
We study the following singular elliptic equation with critical exponent ⎧ in Ω, ⎨u > 0 in Ω, ⎩u = 0 on ∂Ω, where (N≥3) is a smooth bounded domain, and λ > 0, γ ∈ (0,1) are real parameters. Under appropriate assumptions on Q, by the constrained minimizer and perturbation methods, we obtain two positive solutions for all λ > 0 small enough.